Der Digitale Produktpass (DPP) soll umfassende Informationen über Produkte während ihres gesamten Lebenszyklus bereitstellen und so zur Kreislaufwirtschaft beitragen. Dies bietet für KMU sowohl Chancen, aber auch Herausforderungen bei der Umsetzung. Im nachfolgenden werden diese näher erläutert sowie Ziele und gesetzliche Rahmenbedingungen des DPP.

Was ist der DPP?

Der Digitale Produktpass (engl. Digital Product Passport, Abk. DPP) ist ein innovatives Konzept, das ausgelöst durch den europäischen Green Deal und den Aktionsplan für die Kreislaufwirtschaft in den letzten Jahren an Bedeutung stark zunahm. Der DPP zielt darauf ab, umfassende Informationen über Produkte während ihres gesamten Lebenszyklus bereitzustellen. Ausgelöst durch Ressourcenknappheiten (z. B. seltene Erden, Lithium), erstarkendem Protektionismus und dem Ukraine-Konflikt ist eine Transformation der Wirtschaft vom linearen Modell hin zu einer Circular Economy notwendig. Hierbei ist eine Möglichkeit der Transformation Geschäftsmodelle zu verändern, sodass gewährleistet ist, dass Ressourcen aus Alt-Produkten wiederverwendet werden und in Europa verfügbar bleiben. Außerdem ermöglichen Lebenszyklusdaten in zukünftigen DPP, dass Unternehmen, Regierungen und Verbraucher ein besseres Verständnis für die verwendeten Materialien und deren Umweltauswirkungen haben.

Die EU hat sich zum Ziel gesetzt, den Übergang zu einer klimaneutralen, nachhaltigen Wirtschaft zu beschleunigen und beschreibt diesen parallelen Prozess als die grüne und digitale „Twin-Transformation“. In den letzten Jahren wurden mehrere gesetzgeberische Initiativen ins Leben gerufen, die den DPP unterstützen und dessen Implementierung vorantreiben. Dazu gehören beispielsweise innerhalb der EU die Verordnung über ökologisches Design für nachhaltige Produkte, die sogenannte Ökodesignverordnung (engl. Ecodesign for Sustainable Product Regulation, Abk. ESPR) oder die Batterie Verordnung (EU Battery Regulation), die einen digitalen Batteriepass einführt. Diese Initiativen zielen darauf ab, die Umweltbelastungen von Produkten zu reduzieren und den Aufbau einer Kreislaufwirtschaft zu fördern. Neben den dadurch entstehenden Vorschriften und Anforderungen birgt der DPP jedoch auch nennenswerte Möglichkeiten für Unternehmen aller Größen.

DPP werden als chancenreiche Lösung angesehen, um die Produktinformation über die gesamte Wertschöpfungskette hinweg verfügbar zu machen und die Ressourcennutzung durch verbesserte Informationsgrundlagen für z. B. Reuse-, Remanufacturing- oder Recyclingprozesse zu optimieren. Sie können zu einer verbesserten Energie- und Materialeffizienz beitragen und neue Geschäftsmodelle fördern, die auf digitalem Datenaustausch basieren. Die durch den DPP ermöglichte Nachverfolgbarkeit eröffnet Verbrauchern und Industrieakteuren fundierte Entscheidungen, die auf den ökologischen Auswirkungen der Produkte basieren.

Definition und Ziele des DPP

Ein Digitaler Produktpass (DPP) ist eine strukturierte Sammlung produktbezogener Daten, die einen definierten Umfang und vereinbarte Datenmanagement- sowie Zugriffsrechte umfasst. Diese Informationen werden über einen einzigartigen Identifikator bereitgestellt und sind elektronisch über ein Datenträgersystem (z. B. QR-Code) zugänglich. Der DPP soll Informationen zu Nachhaltigkeit, Kreislauffähigkeit sowie Möglichkeiten zur Wiederverwendung, Aufarbeitung und Recycling enthalten.
Die Ziele des DPP sind vielfältig:

  1. Förderung einer nachhaltigen Produktion
  2. Lebensdauer von Produkten verlängern, die Nutzung optimieren und neue Geschäftsmöglichkeiten bieten
  3. Unterstützung von Verbrauchern bei nachhaltigeren Kaufentscheidungen
  4. Ermöglichen eines Übergangs zur Kreislaufwirtschaft, indem die Material- und Energieeffizienz gesteigert werden
  5. Transparenz für Behörden, um die Einhaltung von Vorschriften zu überprüfen

Wie definiert die Gesetzgebung den DPP?

Die Einführung des DPP wird von verschiedenen legislatorischen Maßnahmen unterstützt. Die neue Ökodesignverordnung (engl. Ecodesign for Sustainable Products Regulation, Abk. ESPR), die im Juli 2024 in Kraft getreten ist, zielt darauf ab, nachhaltige Produkte zur Norm zu machen und den Übergang zu einer ressourcenschonenden Wirtschaft zu beschleunigen. Der DPP stellt ein zentrales Element dieser Verordnung dar, indem er die Rückverfolgbarkeit von Produkten und ihren Komponenten verbessert. Die ehemalige Ökodesignverordnung war begrenzt auf stromverbrauchende Produkte, die im Jahr 2024 erlassene ESPR umfasst im Gegensatz dazu alle physischen Produkte. Ausnahmen bestehen lediglich für bestimmte Produktgruppen im Bereich Arzneimittel, Pflanzen und Lebensmittel.

Ein weiterer wichtiger legislatorischer Aspekt ist die Verordnung über Batterien (EU Battery Regulation), die die Einführung eines digitalen Batteriepasses vorsieht und somit für die erste Produktgruppe die Anforderungen an einen DPP ausformuliert und die Einführung ab 2027 verpflichtend macht. Diese Initiative fördert die Transparenz und Nachverfolgbarkeit von Batterien, was für die Entwicklung einer nachhaltigen Batteriewirtschaft von entscheidender Bedeutung ist.

Im Arbeitsplan der ESPR wird gerade von der EU-Kommission festgelegt für welche Produktgruppen der DPP ab wann verpflichtend wird. Dieser Arbeitsplan soll in der ersten Hälfte des Jahres 2025 veröffentlicht werden. Daraus abgeleitet werden in den nächsten Jahren für die entsprechenden Produktgruppen delegierte Rechtsakte (engl. Delegated Acts) in Kooperation mit der Industrie entwickelt, welche die bereit zu stellenden Daten, Verfügbarkeitszeitraum und Zugriffsrechte definieren.

In einer Studie zu Produktprioritäten der EU-Kommission wurden Produktgruppen evaluiert und Empfehlungen für die wichtigsten Produktgruppen und deren Implementierung innerhalb der ESPR vorgeschlagen. [2] Die Analyse basiert auf zehn Umweltkategorien, wie Auswirkungen auf Wasser, Luft und Boden, Abfallerzeugung und Energieverbrauch. Hierbei sind elf Endprodukte und sieben Zwischenprodukte hervorgehoben worden:

Wie wird der Batteriepass umgesetzt?

Der Batteriepass ist ab Februar 2027 verpflichtend für LMT-Batterien (Light Means of Transport, wie E-Bikes, E-Roller etc.), für Batterien in Elektrofahrzeugen (Electric Vehicle: EV-Batterien) und für Industriebatterien mit einer Kapazität höher als 2 kWh, die auf den europäischen Markt gebracht werden. Für jede Batterie ist ein einzelner DPP mit einem Datenträger zur Verfügung zu stellen, welcher über den Lebenszyklus hinweg gepflegt wird.

Der Batteriepass enthält laut Batterie Verordnung mehr als 90 einzelne Datenpunkte. Wichtige Inhalte des Batteriepasses umfassen Informationen zu Zertifikaten, zur Lieferkette, zum CO2-Fußabdruck, zur Materialzusammensetzung, zur Kreislauffähigkeit sowie zur Leistung und Haltbarkeit der Batterien. Hier ist eine Übersicht der verpflichtenden Datenpunkte, die im Batteriepass enthalten sein müssen, sowie die vorgeschlagenen freiwilligen Informationen:


[1]

Die klare Abgrenzung zwischen verpflichtenden und freiwilligen Informationen ist entscheidend, um den Nutzen des Batteriepasses zu maximieren und gleichzeitig die Anforderungen an die Unternehmen zu begrenzen.

Ein beispielhafter Use Case des Batteriepass umfasst die Steigerung des Volumens der Wiederverwendung von Elektrofahrzeugbatterien in Energiespeicheranwendungen. Nach acht bis zehn Jahren im Einsatz behalten Lithium-Ionen-Batterien oft über zwei Drittel ihrer nutzbaren Energie, werden allerdings nicht mehr in Elektrofahrzeugen eingesetzt. Sie können allerdings in Sekundäranwendungen wie Energiespeichern weitere fünf bis acht Jahre genutzt werden. Diese Batterien sind entscheidend für die Stabilisierung von Stromnetzen, insbesondere mit dem Anstieg erneuerbarer Energien.

Der Prozess umfasst mehrere Schritte: Zuerst erfolgt eine Bewertung des Batteriezustands, gefolgt von der teilweisen Demontage und der Neuanordnung für spezifische Anwendungen. Die Nutzung eines Digitalen Produktpasses (DPP) verbessert die Effizienz dieses Prozesses erheblich, indem relevante Daten bereitgestellt werden, die die Beurteilung des Batteriezustands erleichtern und technische Tests reduzieren. Wesentliche Vorteile des DPP sind in diesem Use Case die Kostensenkungen, eine erhöhte Sicherheit und ein besseres Risiko-Management.

Welche Chancen und Umsetzungshürden bestehen für den DPP?

Der DPP bietet vielfältige Möglichkeiten sowohl für Unternehmen als auch für die Gesellschaft als Ganzes. Durch den DPP wird Transparenz und Nachverfolgbarkeit erhöht, indem die Offenlegung von Herkunft, Zusammensetzung und Umweltwirkungen von Produkten ermöglicht. Dies stärkt das Vertrauen der Verbraucher und fördert fundierte Kaufentscheidungen. Zudem unterstützt der DPP die Etablierung einer Kreislaufwirtschaft, indem mehr Informationen für unterschiedliche Akteure in der Lieferkette bereitstehen. Die potenzielle Notwendigkeit der Bereitstellung einer Reparaturanleitung für Nutzer:innen oder Reparaturwerkstätten incentiviert Unternehmen einfache Reparaturmöglichkeiten für ihre Produkte zu entwickeln und steigert somit die Anzahl an Produkten, die repariert werden können. Daten über verwendete Materialien und Recyclinghinweise ermöglichen beispielsweise Entsorgern die Rückführung von Produkten bzw. einzelnen Werkstoffen in passende Recyclingkreisläufe, wodurch die Ressourcennutzung und die Kreislaufführung gesteigert werden.

Der Zugang zu neuen Märkten wird durch die Bereitstellung detaillierter Produktinformationen erleichtert, was besonders in Sektoren von Vorteil ist, die auf nachhaltige Produkte setzen. Darüber hinaus dient der DPP als Grundlage für innovative, zirkuläre Geschäftsmodelle, wie etwa das Konzept „Produkt-as-a-Service“ oder Rücknahmeprogramme. Er ermöglicht Echtzeitdaten-Erfassung über den Lebenszyklus von Produkten, was zu optimierten Entscheidungen in den Bereichen Produktion, Design und Vertrieb führt. Schließlich unterstützt er Unternehmen bei der Einhaltung von Umwelt- und Nachhaltigkeitsvorschriften und trägt zur Erfüllung gesetzlicher Anforderungen bei.

Trotz dieser Chancen sind auch einige Herausforderungen bei der Implementierung des DPP zu beachten. Die technologische Komplexität des DPP stellt eine wesentliche Hürde dar, da die Implementierung komplexer digitaler Infrastrukturen erforderlich ist. Hierbei müssen auch die Lösungen unterschiedlicher Anbieter zusammenpassen. Dafür müssen technische Standards und Protokolle entwickelt und harmonisiert werden. Die Verwaltung sensibler Produktdaten ist ebenfalls eine Herausforderung, da Unternehmen den Schutz vertraulicher Informationen gewährleisten müssen, ohne die Transparenz zu gefährden.

Weitere Hürden sind die Kosten und Ressourcen, die für die Entwicklung und Implementierung eines DPP erforderlich sind. Unterschiedliche Branchen und Produktkategorien haben zudem unterschiedliche Anforderungen an den DPP, was die Umsetzung einer einheitlichen Lösung erschweren könnte. Widerstand gegen Veränderungen ist eine weitere Hürde, da Unternehmen möglicherweise zögerlich sind, bestehende Systeme und Prozesse anzupassen, was eine grundlegende Neugestaltung der Geschäftsmodelle erfordern könnte. Schließlich gibt es regulatorische Unsicherheiten, da die Entwicklung des DPP eng mit fortlaufenden rechtlichen Entwicklungen verknüpft ist und Unklarheiten über zukünftige Vorschriften Unternehmen davon abhalten könnten, in die Implementierung zu investieren.

Welche Auswirkungen hat der DPP auf KMU?

Die Einführung des DPP wird erhebliche Auswirkungen auf kleine und mittlere Unternehmen (KMU) haben, die das Rückgrat der deutschen Wirtschaft bilden. KMU haben heute bereits die Möglichkeit sich auf die Entwicklungen vorzubereiten und sie für sich nutzbar zu machen. Folgender Überblick soll den Einstieg hierfür erleichtern:

Chancen für KMU

  1. Zugang zu Märkten und Wettbewerbsfähigkeit: Der DPP ermöglicht KMU, ihre Produkte auf transparente und nachvollziehbare Weise zu präsentieren. Durch die Bereitstellung detaillierter Informationen über die Nachhaltigkeit und die Umweltauswirkungen ihrer Produkte können sich KMU von größeren Wettbewerbern abheben und neue Märkte erschließen, die zunehmend Wert auf Nachhaltigkeit legen.
  2. Erleichterung der Zusammenarbeit in der Lieferkette: Der DPP fördert die Zusammenarbeit innerhalb von Lieferketten, indem er eine gemeinsame Informationsbasis bereitstellt. KMU können dadurch effizienter mit anderen Unternehmen zusammenarbeiten, was zu Kosteneinsparungen und einer verbesserten Ressourcennutzung führen kann.
  3. Innovative Geschäftsmodelle: Die Möglichkeit, auf digitale Daten zuzugreifen und diese zu nutzen, eröffnet KMU neue Geschäftsmodelle, wie etwa das „Produkt-as-a-Service“-Modell oder Rücknahme- und Recyclingprogramme. Dies kann insbesondere für Unternehmen in ressourcenintensiven Sektoren von Vorteil sein.
  4. Verbesserte Kundenbindung: Mit einem DPP können KMU ihren Kunden umfassende Informationen über ihre Produkte bereitstellen. Dies fördert nicht nur das Vertrauen der Verbraucher, sondern kann auch zu einer stärkeren Kundenbindung führen, da Verbraucher zunehmend Wert auf Transparenz und Nachhaltigkeit legen.
  5. Zugang zu Fördermitteln und Unterstützung: KMU, die den DPP implementieren, könnten Zugang zu Fördermitteln und Unterstützungsprogrammen erhalten, die von der EU und anderen Institutionen bereitgestellt werden, um die Transformation zu einer digitalen und zirkulären Wirtschaft zu fördern.

Herausforderungen für KMU

  1. Kosten und Ressourcen für die Implementierung: Die Einführung des DPP erfordert Investitionen in digitale Infrastruktur, Schulungen und möglicherweise die Anpassung bestehender Produktionsprozesse. Für viele KMU kann dies eine erhebliche finanzielle Hürde darstellen.
  2. Technologische Barrieren: KMU haben möglicherweise nicht die technologischen Ressourcen oder das Know-how, um die erforderlichen digitalen Systeme zu implementieren. Dies könnte zu einer Wettbewerbsbenachteiligung im Vergleich zu größeren Unternehmen führen, die über umfangreiche IT-Abteilungen verfügen.
  3. Komplexität der Datenanforderungen: Der DPP erfordert eine Vielzahl von Daten, die von den Unternehmen erfasst und verwaltet werden müssen. KMU, die möglicherweise nicht über die nötigen Ressourcen oder die erforderliche Datenmanagement-Infrastruktur verfügen, könnten Schwierigkeiten haben, die Anforderungen zu erfüllen.
  4. Wettbewerbsdruck: Während der DPP KMU neue Chancen eröffnet, kann er auch den Wettbewerb verschärfen. Unternehmen, die sich nicht schnell anpassen oder die Anforderungen nicht erfüllen können, laufen Gefahr, im Wettbewerb zurückzufallen.
  5. Regulatorische Unsicherheiten: Da sich der DPP und die damit verbundenen gesetzlichen Rahmenbedingungen noch in der Entwicklung befinden, ist es für KMU schwierig, sich auf zukünftige Anforderungen einzustellen. Unsicherheiten hinsichtlich der Implementierung und der notwendigen Anpassungen kann Unternehmen davon abhalten, in den DPP zu investieren.

Fazit – Zusammenarbeit ist entscheidend

Insgesamt bietet der Digitale Produktpass sowohl Chancen als auch Herausforderungen für kleine und mittlere Unternehmen. Während er als Katalysator für Innovation und nachhaltige Praktiken fungieren kann, müssen KMU die erforderlichen Ressourcen bereitstellen und sich den technologischen Herausforderungen stellen, um von den Vorteilen des DPP zu profitieren. Eine enge Zusammenarbeit zwischen KMU, Regierungen und anderen Stakeholdern wird entscheidend sein, um die erfolgreiche Implementierung des DPP zu gewährleisten und um sicherzustellen, dass KMU nicht im Wettbewerb zurückfallen. Das Mittelstand-Digital Zentrum Augsburg und seine Expert:innen werden zu diesem relevanten und dynamischen Thema weiterhin aktuelle Informationen und Weiterbildungsinhalte zur Verfügung stellen. Kommen Sie gern mit ihren Nachfragen auf uns zu!

[1] Deutsches Institut für Normung e.V. (DIN). (2025). DIN DKE SPEC 99100: Anforderungen an Datenattribute des Batteriepasses. https://dx.doi.org/10.31030/3582101
[2] European Commission, Joint Research Centre, Faraca, G., Ranea Palma, A., Spiliotopoulos, C., Rodríguez-Manotas, J., Sanye Mengual, E., Amadei, A.M., Maury, T., Pasqualino, R., Wierzgala, P., Pérez-Camacho, M.N., Alfieri, F., Bernad Beltran, D., Lag Brotons, A., Delre, A., Perez Arribas, Z., Arcipowska, A., La Placa, M.G., Ardente, F., Mathieux, F. and Wolf, O., Ecodesign for Sustainable Products Regulation: Study on new product priorities, Publications Office of the European Union, Luxembourg, 2024, https://data.europa.eu/doi/10.2760/7400680, JRC138903.

In der zunehmend vernetzten Wirtschaft, die schnellere Entscheidungen und weiteren Vorausblick erforderlich macht, wird die Supply Chain Transparenz (SCT) für Unternehmen immer wichtiger. Durch die Digitalisierung hat sich auch die Verfügbarkeit von Daten rapide verändert. Insbesondere über die eigenen Unternehmensgrenzen hinaus werden die Potenziale dieser Verfügbarkeit heute häufig nicht ausgeschöpft. Ein System für den vereinfachten Datenaustausch ist entscheidend, um den Anforderungen moderner Märkte gerecht zu werden. Föderierte Datenökosysteme stellen einen innovativen Ansatz dar, der Unternehmen ermöglicht, transparenter zu agieren, ohne sensible Informationen preiszugeben, und damit eine nachhaltige Zusammenarbeit zu fördern.

Supply Chain Transparenz als Wettbewerbsvorteil

In einer globalisierten Wirtschaft, in der Lieferketten zunehmend komplexer werden, ist die Supply Chain Transparenz (SCT) zu einem entscheidenden Faktor für den Erfolg von Unternehmen geworden. SCT bezeichnet die Offenlegung und den Austausch von Informationen über Produkte, deren Herkunft und Historie entlang der gesamten Lieferkette. Genau wie das Management von Lieferketten selbst ist auch die SCT eine organisationsübergreifende Aufgabe. Sie setzt sich zusammen aus Sichtbarkeit, also einem klaren Verständnis der einzelnen Komponenten in der Lieferkette über die direkten Zulieferer hinweg sowie der Nachverfolgbarkeit, also der Fähigkeit einzelne Materialien, Komponenten und Produkte über die Kette hinweg zu identifizieren und zu lokalisieren. Die Vorteile von SCT sind vielfältig und ihre Relevanz nimmt stetig zu.

Ein zentrales Anliegen im Kontext von SCT ist die Reduzierung der Risiken, die von internen und externen Disruptionen verursacht werden. Transparenz ermöglicht es Unternehmen, proaktive Maßnahmen zu planen, anstatt nur reaktiv zu handeln. So können beispielweise überflüssige Intermediäre oder Ursprünge wiederholter Engpässe identifiziert und die Wertschöpfungskette entsprechend neu justiert werden. Eine erhöhte Transparenz und Reaktionsfähigkeit bei allen Partnern reduziert so z.B. auch überproportionale Schwankungen der Bestellmengen in der Lieferkette bei kleinsten Änderungen in der Nachfrage des Endverbrauchers, den sogenannten Bullwhip-Effekt, der sich besonders auf KMU auswirken kann, die oft am Anfang oder in der Mitte der Lieferkette großer Produzenten stehen. SCT und Datenaustausch unterstützen auch maßgeblich Lernprozesse innerhalb und zwischen Unternehmen.

Des Weiteren führt SCT zu einer höheren Effizienz, da Unternehmen ein besseres Verständnis für ihre eigenen Wertschöpfungsprozesse gewährt wird. Dies führt zu einer Verbesserung der operativen Leistung, indem Prozesse schlanker und wandelbarer gestaltet werden können. So erlaubt SCT beispielsweise geringere Bestände, gesteigerte Kontrolle über Ausgaben und effizientere Logistik-Koordination. Ein Beispiel das in Unternehmen verschiedener Branchen relevant ist, sind Produkt-Rückrufe. Rückverfolgbarkeit ermöglicht eine schnellere Identifikation des Problemursprungs und erlaubt eine spezifischere Eingrenzung der betroffenen Produkte. Mit einem wachsenden Markt zunehmend fortschrittlicher Imitate ermöglicht SCT auch eine Validierung von Reklamationen.

Darüber hinaus trägt SCT dazu bei, die ständig steigenden Anforderungen an die Verfügbarkeit von Informationen und die Rückverfolgbarkeit von Produkten zu erfüllen. Einerseits wird dies durch zunehmend striktere Regulatorik ausgelöst, sowohl auf nationaler (z. B. Lieferkettensorgfaltspflichtengesetz), als auch auf internationaler Ebene (z. B. Corporate Sustainability Reporting Directive, European Sustainable Products Regulation, etc.). Andererseits steigt die generelle Erwartungshaltung von Konsumenten bezüglich der Nachhaltigkeit von Produkten. In einer Zeit, in der das öffentliche Bewusstsein für soziale wie auch Umweltfragen zunimmt, wachsen die Anforderungen an Unternehmen ihre Lieferketten zu überwachen, um Missstände zu identifizieren.

Die genannten Punkte zeigen, das SCT zu einem relevanten Wettbewerbsvorteil wird und die Implementierung verschiedener Optimierungsansätze befähigt. Die Digitalisierung hat einen maßgeblichen Einfluss auf SCT. Digitale Technologien wie Radio Frequency Identification (RFID), das Internet of Things (IoT) und zunehmend performantere Algorithmen ermöglichen und unterstützen die effektive und effiziente Datensammlung und –auswertung. Allgemein können die verschiedenen Technologien eingesetzt werden, um damit Prozesse zu überwachen und die automatisierte Verarbeitung von Daten und Informationen zu ermöglichen. Des Weiteren schaffen sie durch die Entwicklung und Optimierung von Möglichkeiten zum Austausch und der gemeinsamen Nutzung von Daten die entsprechenden Voraussetzungen zur Zusammenarbeit zwischen Unternehmen und entlang der gesamten Lieferkette.

Hürden bei der Umsetzung von Supply Chain Transparenz

Trotz der oben genannten Vorteile und technologischen Möglichkeiten gibt es zahlreiche Barrieren, die Unternehmen daran hindern, SCT als Ziel zu verfolgen bzw. deren Ausbau voranzutreiben.

Eine der größten Herausforderungen ist die Komplexität der Lieferketten selbst. Viele Unternehmen unterschätzen den Aufwand, der erforderlich ist, um Sichtbarkeit über direkte Beziehungen hinaus zu schaffen. Oft ist die Sichtbarkeit der Wertschöpfungsstufen zu Beginn der Kette am geringsten oder die beteiligten Parteien sind überhaupt nicht zu identifizieren.

Ein weiteres Hindernis ist die Angst vor dem Verlust geistigen Eigentums. Unternehmen sind besorgt, dass sie durch den Austausch von Informationen in ihrer Lieferkette Wettbewerbsvorteile verlieren könnten. Verbunden hiermit sind Unklarheiten über die Erwartungshaltung der Partner und die Verwendung von Daten. Diese Sorgen aufgrund mangelnden Vertrauens und fehlender Kontrollmechanismen verhindern die Herausgabe von Daten.

Darüber hinaus stellen die mangelnde Interoperabilität und das Fehlen geeigneter Systeme ein wesentliches Hindernis für den Datenaustausch über Unternehmensgrenzen hinweg dar. Bestehende Systeme sind häufig proprietär und nicht darauf ausgelegt, den Anforderungen einer internen und externen Zusammenarbeit mit mehreren Parteien gerecht zu werden, was die Einführung von SCT zusätzlich erschwert. Um SCT zu erreichen, ist ein aktiver und einfacher Austausch von Daten zwischen den Unternehmen notwendig.

SCT erfordert standardisierte Methoden und Praktiken, die alle Akteure innerhalb des Netzwerks, aber auch der einzelnen Unternehmen beachtet und einbezieht. Eine Standardisierung des Datenaustausches und des Umgangs mit den Daten wird auch organisationale Änderungen mit sich bringen. So ist eine angemessene „Data Governance“, also Regelungen für den Zugang und die Verantwortung über die Erhebung, Bewertung und Änderung von Daten notwendig. Diese Standards dürfen jedoch nicht nur für ein Liefernetzwerk getroffen werden, sondern müssen sektorweit bzw. sogar sektorübergreifend wirksam sein. Die Standardisierung bezieht sich auch auf die Daten selbst, um ihre Zuverlässigkeit und Genauigkeit sicherzustellen.

Erfolgreiche Standardisierung kann nur unter Einbezug und vor allem Austausch und Kollaboration aller am Datenaustausch Beteiligten möglich gemacht werden. Um diese Kollaboration auch effizient umzusetzen, müssen unternehmerische Strategien, Methoden der Datenerhebung und digitale Technologien für ihren Austausch abgestimmt werden.

Etablierte Systeme für transparente Lieferketten adressieren Hürden nur ungenügend

Um SCT im großen Stil zu ermöglichen, müssen Systeme bestimmte Anforderungen erfüllen. Zunächst müssen sie eine Verbindung zu allen Ebenen der Lieferkette herstellen und den aktiven Austausch von Informationen fördern. Ein solches System soll auch die Integration von Informationen unter den Mitgliedern der Lieferkette fördern, um Wissensasymmetrien zu eliminieren und sicherzustellen, dass alle Beteiligten über die gleichen Informationen verfügen.

Ein weiterer wichtiger Aspekt ist die Gewährleistung der Datensicherheit und Datensouveränität. Unternehmen müssen die Gewissheit haben, die Kontrolle über ihre Daten zu behalten, um Bedenken hinsichtlich Missbrauchs und Verlustes von geistigem Eigentum zu adressieren. Ein transparentes System muss klare Richtlinien für den Datenaustausch und die Verwendung von Informationen enthalten sowie Nachverfolgbarkeit der Nutzung sicherstellen, um das Vertrauen zwischen den Partnern zu stärken und Gleichheit zu sichern. Nur durch diese Absicherungen kann das für Kollaboration notwendige Vertrauen aufgebaut werden.

Die koordinierende Instanz eines solchen Systems muss standardisierte Datenformate und Protokolle definieren, um sicherzustellen, dass Informationen effizient und effektiv ausgetauscht werden können.

Die systemischen Lösungsansätze, die entsprechend dieser Anforderungen in den letzten Jahren entstanden sind, gestalten sich häufig als web-basierte Plattformen für einen Supply Chain Datenaustausch. Über sie konnten neue Erfolge im Datenaustausch und unternehmensübergreifender Kollaboration für SCT erreicht werden. Heute sind diese Plattformen zumeist noch im Besitz eines Akteurs, fokussieren sich auf das Netzwerk eines singulären Unternehmens oder im besten Fall auf einzelne Branchen. Der Betrieb einer solchen Plattform erfordert enorme Kompetenzen und Ressourcen von der Infrastruktur über Vernetzungs- und Speichermechanismen, weswegen große Konzerne aus der Informations- und Kommunikationstechnologie (IKT) die entsprechenden Ressourcen oft als cloud-basierten Service anbieten. Die Nutzung dieser Plattformen für einen SCT-Datenaustausch geht in heute gängigen Modellen allerdings mit einem Kontrollverlust über diese Daten an den Betreiber der Plattform einher, da sie gemeinhin zentral auf dessen Servern zwischengespeichert werden. Darüber hinaus bieten sie so eine ressourcenreiche zentrale Angriffsfläche für Cyberattacken.

Forderungen nach einem dezentralen Ersatz für diese Infrastruktur haben daher neue Konzepte und Ansätze wie Blockchain für SCT und föderierte Datenökosysteme und Datenräume hervorgebracht. Sie sollen für mehr Transparenz über die Datenfreigabe und -nutzung sorgen, das Machtgefälle ausgleichen und vor allem die sogenannte zentrale „Datenkrake“ durch die Schaffung von Souveränität überbrücken.

Föderierte Datenökosysteme und Datenräume als Gegenentwurf zur klassischen Plattform

Ökosysteme jeglicher Form sind im Kern eine Zusammenkunft verschiedener Akteure, welche kollektiv einer Herausforderung begegnen. Die kollektive Herausforderung, die Datenökosystemen zugrunde liegt, ist das Generieren von Mehrwert aus Daten und Informationen, z. B. für den Aufbau transparenter Lieferketten.

Die beteiligten Akteure nutzen Daten und verwandte Ressourcen gemeinsam, um Werte zu schaffen, die sie allein nicht erreichen könnten. Diese Zusammenarbeit ist entscheidend, da der Austausch von Daten die zentrale Motivation für die Bildung eines Datenökosystems darstellt.

Wesentliche Rollen innerhalb eines Datenökosystems sind Datenkonsumenten, Datenanbieter und Intermediäre. Datenkonsumenten konsumieren angebotene Daten und können dabei auf die Unterstützung von Intermediären (z. B. Analytics-Dienstleister) angewiesen sein, um die bereitgestellten Daten aufzubereiten oder zu transformieren. Akteure können in unterschiedlichen Szenarien verschiedene Rollen einnehmen.

Nach dieser Logik entwickeln sich Datenökosysteme um eine technische Infrastruktur, die entweder zentralisiert über eine Plattform oder dezentral durch einen sogenannten „Datenraum“ gestaltet werden kann. Um den generierten Mehrwert zu maximieren, die Hürden beim Datenteilen zu überwinden und Dezentralität zu fördern, hat das Konzept des Datenraums in den letzten Jahren zunehmend an Bedeutung gewonnen. Bei dieser Variante wird vermehrt von föderierten Datenökosystemen gesprochen. In der wissenschaftlichen Diskussion ist die Verwendung der Begriffe „Datenraum“ und „Datenökosystem“ nicht einheitlich. Es wird jedoch vermehrt wie folgt beschrieben: Datenökosysteme bilden sich um einen Datenraum herum.

Datenräume bieten eine dezentrale Infrastruktur für den vertrauensvollen Austausch von Daten und basieren auf gemeinsamen Standards und Protokollen, die den Datenaustausch und die Interoperabilität zwischen verschiedenen Datenräumen und Datenökosystemen unterstützen. Die technische Architektur eines Datenraums umfasst mehrere Bausteine, die auf die spezifischen Anforderungen der Nutzenden zugeschnitten werden können, ohne dabei die Kernfunktionen der Datenintegration und Datensouveränität zu verlieren:

  • Interoperabilität wird durch standardisierte Datenformate, Schnittstellen und Kommunikationsprotokolle gewährleistet.
  • Vertrauen wird durch Zugangs- und Identitätskontrolle sowie Identitätsprüfung gewährleistet. Die Verifizierungsmechanismen werden ebenfalls kollektiv abgesegnet.
  • Datenwert wird einerseits durch eine Katalogisierung und Suchoptionen, welche Anfragen zu Datenpaketen erlauben, geschaffen. Andererseits sichern Zugangs- und Identitätskontrollen, wie auch „smarte Verträge“, dass der Wert der Daten auch nach dem Teilen bestehen bleibt und Missbrauch oder Lecks vorgebeugt werden.
  • Governance beschreibt alle vom Kollektiv der Teilnehmenden (man spricht auch von einem „föderierten“ oder „Allianz-geführten“ Ansatz) festgelegten Regeln und Vorschriften, die den Datenraum strukturieren und welchen alle Beteiligten zugesagt haben müssen. Zudem umfasst es Kontrollmechanismen, die die konstante Einhaltung dieser Regeln gewährleisten.
  • Konnektoren beschreiben die Anwendungen, welche die Teilnehmenden verwenden, um Zugang zum Datenraum zu erhalten (z. B. zu den dort aufzufindenden Datenangeboten und Services) und welche den direkten peer-to-peer Datenaustausch ermöglichen.

Entscheidender Aspekt der Datenräume ist, dass sie eine transparente und kontrollierbare Umgebung schaffen, in der Unternehmen entlang der gesamten Lieferkette Daten austauschen können. Das hilft, Bedenken hinsichtlich der Offenlegung kritischer Daten zu überwinden und fördert eine aktive Teilnahme der Akteure.

Wo müssen Unternehmen heute ansetzen, um morgen zu profitieren?

Der Transformationsprozess, der im Rahmen der Teilnahme- und Anschlussfähigkeit an ein föderiertes Datenökosystem und einen Datenraum durchlaufen wird, ist nicht zu unterschätzen. Dennoch finden sich einige Vorteile und Synergien mit dem ganzheitlichen Digitalisierungsprozess von Unternehmen:

  • SCT ist ein Sammelbegriff, dessen Vorteile hier nur angerissen wurden. Unternehmen jeder Größe müssen ihre individuellen Vorteile und Anwendungsbereiche von Transparenz definieren. Nur so können sie im Ökosystem selbstbewusst auftreten und die für sie relevanten Daten identifizieren und anfordern.
  • Parallel sind Supply Chain Fragestellungen wiederum nur ein Teilbereich der Anwendungsfälle von Datenökosystemen. Von Automatisierungslösungen für die Fertigung über niedrigschwellige Bereitstellung von KI-basierten Lösungen hin zum Aufbau neuer datenbasierter Serviceangebote für Kunden ist der Spielraum groß. Je mehr Potenzial und Anwendungsfälle identifiziert werden, desto rentabler wird die Investition in den Aufbau der notwendigen Infrastruktur und Prozesse.
  • Um Nutzenpotenziale aufzudecken, sollten Unternehmen sich bereits heute ihr Ökosystem vergegenwärtigen. Eine detaillierte Analyse der bestehenden Lieferanten, Kunden, Dienstleister, Institutionen und weiterer strategischer Partner erleichtert die Identifikation interessanter Datensätze ebenso wie Interessenten an den eigenen Datenangeboten.
  • Sowohl die standardkonforme Bereitstellung der von Datenkonsumenten angefragten Datensätze als auch die Verarbeitung von erhaltenen Daten stellen Anforderungen an die Unternehmens- und IT-Architektur. Beispielsweise müssen neue Verantwortlichkeiten und Zugriffsrechte verteilt werden, aber auch die Speicherung und Integration erfordern möglicherweise neue Systeme oder Anpassungen an Legacy-Systemen.

Die hier erwähnten Ansätze spielen sowohl im Kontext der Teilnahme an Datenökosystemen als auch in der Planung und dem Aufbau einer Digital- bzw. Datenstrategie eine Rolle. Die Kompetenzen, wie beispielsweise die Identifikation von Nutzenpotenzialen und deren Bewertung, wie auch die Nutzenpotenziale selbst können sowohl für das eine als auch für das andere relevant sein. Dasselbe gilt für die Zukunftsanforderungen an die Architektur eines Unternehmens. Weitere Erleichterung soll durch Software-Komponenten gegeben werden, welche „off the shelf“ genutzt werden können. Sie sollen vor allem kleinen und mittleren Unternehmen einen niedrigschwelligen Zutritt ermöglichen.

 

Die Versorgungssicherheit kritischer Rohstoffe stellt kleine und mittlere Unternehmen (KMU) vor wachsende Herausforderungen. Geopolitische Spannungen, Unterbrechungen in den Lieferketten und steigende Rohstoffpreise verschärfen die Situation erheblich. Gleichzeitig eröffnen neue gesetzliche Vorgaben wie der Critical Raw Materials Act (CRMA) der EU Chancen, indem sie klare Rahmenbedingungen für eine resilientere und nachhaltigere Nutzung kritischer Rohstoffe schaffen. Mit welchen Maßnahmen KMU ihre Risiken gezielt minimieren und ihre Wettbewerbsfähigkeit langfristig sichern können, wird in diesem Artikel erklärt.

Die wirtschaftlich wichtigsten Rohstoffe mit hohem Risiko bezüglich Versorgungssicherheit werden als kritische Rohstoffe bezeichnet.[1] Kritische Rohstoffe bilden die Grundlage zahlreicher industrieller Lieferketten und sind unverzichtbar für moderne Technologien wie Elektrofahrzeuge, Windkraftanlagen und Halbleiter. Die Nachfrage nach diesen Rohstoffen steigt rapide an: So wird beispielsweise erwartet, dass der Bedarf an Lithiumbatterien bis 2050 um das 21-fache zunimmt. Gleichzeitig ist Europa in hohem Maße von Importen aus Drittstaaten abhängig, was zu erheblichen Risiken in den Lieferketten führt. China dominiert derzeit die Verarbeitung und Raffination vieler dieser Rohstoffe, darunter 100 % der Seltenen Erden, die in Dauermagneten verwendet werden.[2]

Diese Abhängigkeit, kombiniert mit einer steigenden globalen Nachfrage und geopolitischen Unsicherheiten, stellt nicht nur große Konzerne, sondern auch KMU vor immense Herausforderungen. KMU, die oft auf flexible und spezialisierte Produktionsprozesse angewiesen sind, stehen vor der Aufgabe, ihre Beschaffung und Lieferketten in einem zunehmend unsicheren Umfeld anzupassen. Gleichzeitig fehlt ihnen aufgrund begrenzter Ressourcen oft die Kapazität, strategische Maßnahmen wie die Diversifikation von Lieferquellen oder die Einführung von Recyclingprozessen eigenständig umzusetzen.[3] Um diesen Herausforderungen zu begegnen und die europäische Industrie insgesamt widerstandsfähiger zu machen, verabschiedete die EU im März 2024 den Critical Raw Materials Act.[4] Dieses Gesetz ist ein zentraler Bestandteil einer umfassenden Strategie zur Diversifizierung der Rohstoffversorgung, zur Förderung nachhaltiger Lieferketten und zur Erhöhung der Selbstversorgung.

Critical Raw Materials Act – ein Schritt zu mehr Resilienz

Der CRMA schafft neue rechtliche Rahmenbedingungen, die darauf abzielen, die europäische Industrie widerstandsfähiger gegenüber Lieferengpässen bei kritischen Rohstoffen zu machen. Diese Maßnahmen umfassen die gesamte Wertschöpfungskette, von der Rohstoffgewinnung bis zum Recycling, und dienen sowohl der Stärkung der Versorgungssicherheit als auch der Förderung nachhaltiger Praktiken. Bis 2030 sollen folgende Zielvorgaben für strategisch wichtige Rohstoffe erreicht werden – also für jene kritischen Rohstoffe, die Prognosen zufolge besonders von globalen Marktungleichgewichten betroffen sein werden:

  • Förderung der Eigenproduktion:
    Die EU strebt an, mindestens 10 % des jährlichen Bedarfs an kritischen Rohstoffen durch Eigenproduktion innerhalb der EU zu decken. Strategische Projekte zur Rohstoffgewinnung und Verarbeitung sollen beschleunigt genehmigt und finanziell unterstützt werden.
  • Steigerung der Verarbeitungskapazitäten:
    Die EU hat sich das Ziel gesetzt, mindestens 40 % des jährlichen Bedarfs an kritischen Rohstoffen innerhalb der Union zu verarbeiten. Dies soll durch den Ausbau von Verarbeitungskapazitäten und die Förderung moderner, nachhaltiger Technologien erreicht werden. Dadurch wird die Abhängigkeit von Drittstaaten verringert und gleichzeitig die Wertschöpfung in Europa erhöht.
  • Recycling und Kreislaufwirtschaft:
    Neue Vorschriften sollen Recyclingquoten für kritische Rohstoffe erhöhen und die Rückgewinnung wertvoller Materialien aus Altprodukten wie Batterien und Elektronik fördern. Ziel ist, mindestens 15 % des jährlichen Verbrauchs aus Recycling zu decken.
  • Diversifizierung der Lieferketten:
    Der CRMA sieht vor, die Abhängigkeit von einzelnen Drittstaaten zu reduzieren. Dazu wird die maximale Importabhängigkeit für einzelne Rohstoffe entlang der Wertschöpfungskette auf 65 % begrenzt. Dies betrifft insbesondere Rohstoffe wie Lithium, Seltene Erden und Kobalt, die aktuell stark von China dominiert werden.

Die ambitionierten Zielvorgaben des CRMA haben weitreichende Auswirkungen auf verschiedene Akteure entlang der Wertschöpfungskette. Insbesondere die Bergbau-, Verarbeitungs- und Recyclingindustrie stehen vor der Herausforderung, die vorgegebenen Quoten für Eigenproduktion, Verarbeitung und Recycling zu erreichen, was erhebliche Investitionen und technologische Innovationen erfordert. Auch die verarbeitende Industrie muss ihre Lieferkettenstrategien anpassen, um den neuen Standards zu entsprechen, was mit potenziellen Kostensteigerungen und Anpassungsaufwand verbunden ist. Trotz dieser Herausforderungen schafft der CRMA einen klaren Rahmen, der den Weg für eine resiliente und nachhaltige Rohstoffversorgung ebnet.[5]

Auswirkungen des CRMA – Strategien und Chancen für KMU

Die Umsetzung des CRMA bringt für KMU sowohl Herausforderungen als auch Chancen mit sich. Einerseits sehen sich viele kleinere Unternehmen mit steigenden Anforderungen an die Anpassung ihrer Lieferketten, höheren Kosten und dem Bedarf an technologischen Innovationen konfrontiert. Andererseits bietet der CRMA klare Rahmenbedingungen, die KMU dabei unterstützen, Abhängigkeiten von kritischen Rohstoffen zu reduzieren und nachhaltige Strategien zu etablieren.[6]

Besonders der Fokus auf Kreislaufwirtschaft und die Diversifizierung von Lieferketten eröffnet KMU die Möglichkeit, ihre Wettbewerbsfähigkeit zu sichern. Gleichzeitig zeigt der CRMA auf, wie wichtig es ist, den Umgang mit kritischen Rohstoffen systematisch zu überdenken und gezielte Maßnahmen zur Sicherung der Rohstoffversorgung einzuleiten. Die jüngsten globalen Krisen, wie die Corona-Pandemie und der Russland-Ukraine-Krieg, haben eindrücklich verdeutlicht, dass Unterbrechungen in Lieferketten schwerwiegende wirtschaftliche Konsequenzen haben können.[7][8]

Eine zentrale Herausforderung für KMU besteht darin, die Kritikalität der von ihnen genutzten Rohstoffe zu bewerten und diese Information in strategische Entscheidungen einzubeziehen. Eine solche Bewertung ermöglicht es Unternehmen, ihre Risiken besser zu verstehen, potenzielle Engpässe frühzeitig zu erkennen und Maßnahmen zur Risikominimierung zu ergreifen. Neben der Risikominderung können KMU durch den proaktiven Umgang mit kritischen Rohstoffen auch Vorteile im Rahmen des CRMA nutzen, etwa durch Förderungen oder Wettbewerbsvorteile, die gut aufgestellten Unternehmen vorbehalten sind.[9] Zur Unterstützung bietet sich die Anwendung strukturierter Methoden zur Kritikalitätsbewertung an. Diese ermöglichen eine systematische Analyse der Rohstoffsituation und dienen als Grundlage für fundierte strategische Entscheidungen.

Fazit – Wege zur Sicherung der Rohstoffversorgung

Die sichere Versorgung mit kritischen Rohstoffen ist für KMU von strategischer Bedeutung. Angesichts globaler Unsicherheiten und steigender Nachfrage müssen sie innovative Ansätze verfolgen, um wettbewerbsfähig zu bleiben. Der CRMA schafft hierfür eine Grundlage mit klaren Zielen für Recycling, Eigenproduktion und Lieferkettendiversifizierung. Ein zentraler Hebel ist die systematische Bewertung von Versorgungsrisiken. Durch die frühzeitige Identifikation potenzieller Engpässe und die Analyse der wirtschaftlichen Bedeutung einzelner Rohstoffe können Maßnahmen wie die Diversifikation von Lieferketten oder der Einsatz nachhaltiger Alternativen ergriffen werden. Diese Ansätze sichern nicht nur Ressourcen, sondern eröffnen auch wirtschaftliche Chancen für Unternehmen, die frühzeitig handeln.

[1] CONSILIUM, (2024). Gesetz zu kritischen Rohstoffen. URL: https://www.consilium.europa.eu/de/infographics/critical-raw-materials/.
[2] EU-KOMISSION, (2023). Factsheet Europäische Verordnung zu kritischen Rohstoffen. URL: https://ec.europa.eu/commission/presscorner/detail/de/fs_23_1663.
[3] THORENZ, A., TUMA, A., RELLER, A., KOLOTZEK, C. und HELBIG, C., (2015). Nachhaltige Ressourcenstrategien in Unternehmen: Identifikation kritischer Rohstoffe und Erarbeitung von Handlungsempfehlungen zur Umsetzung einer ressourceneffizienten Produktion. DOI: 10.13140/RG.2.1.4463.5681.
[4] EU-KOMISSION, (2023). Factsheet Europäische Verordnung zu kritischen Rohstoffen. URL: https://ec.europa.eu/commission/presscorner/detail/de/fs_23_1663.
[5] HOOL, A., HELBIG, C. und WIERINK, G., (2024). „Challenges and opportunities of the European Critical Raw Materials Act“. In: Mineral Economics 37.3, S. 661–668. ISSN: 2191-2203. DOI: 10.1007/s13563-023-00394-y.
[6] EUROPÄISCHE UNION, (2024). Verordnung (EU) 2024/1252 des Europäischen Parlaments und des Rates vom 18. März 2024 über kritische Rohstoffe. URL: https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=OJ:L_202401252.
[7] FELDHOFF, T. und SCHNEIDER, H., (2022). Georessourcen – Transformationen, Konflikte, Kooperationen. Berlin, Heidelberg: Springer
[8] LEHMACHER, W., (2016). Globale Supply Chain – Technischer Fortschritt, Transformation und Circular Economy. Wiesbaden: Springer Fachmedien.
[9] HOOL, A., HELBIG, C. und WIERINK, G., (2024). „Challenges and opportunities of the European Critical Raw Materials Act“. In: Mineral Economics 37.3, S. 661–668. ISSN: 2191-2203. DOI: 10.1007/s13563-023-00394-y.

Künstliche Intelligenz (KI) hat vor allem durch Chatbots wie ChatGPT an Aufmerksamkeit gewonnen. Die Möglichkeit, durch Texteingabe neuen Text zu generieren, ermöglicht die Einbindung von Chatbots als Assistenten für verschiedene Prozesse. KI umfasst jedoch ein weitaus größeres Spektrum als generative Sprach- und Textassistenten. Was sich hinter dieser Technologie verbirgt und wie KI zur Optimierung der Logistik beitragen kann, soll im Folgenden näher betrachtet werden.

Grundlagen der Künstlichen Intelligenz

Das Grundprinzip der KI besteht darin, Daten – wie zum Beispiel Bilder, Texte, aber auch Sensormesswerte – zu analysieren und darin selbstständig Muster und Strukturen zu erkennen. Um dies zu erreichen, muss ein KI-Modell zunächst trainiert werden. Dazu werden diesem während des Trainings Daten zugeführt und vom KI-Modell verarbeitet. Die Daten unterteilen sich in Eingabe- und Ausgabedaten. Ziel der KI ist es, anhand der Eingabedaten die entsprechenden Ausgabedaten vorherzusagen. Die Grundlage jeder KI bilden mathematische Modelle, deren interne Parameter während des Trainings so optimiert werden, dass es Zusammenhänge in den Daten möglichst genau erfasst und verallgemeinern kann.

Inwieweit sich KI von klassischen regelbasierten Verfahren unterscheidet, soll anhand des folgenden Beispiels verdeutlicht werden. Betrachtet wird ein Karton, in den verschiedene Produkte eingelegt werden sollen. Die Frage ist, zu wie viel Prozent der Karton gefüllt ist, wenn eine beliebige Anzahl von Produkten in den Karton gelegt wird (vgl. Abbildung 1).

Abbildung 1: Bestimmung des Füllstands für verschiedene Kartons mit unterschiedlichen Produkten

In Beispiel 1 (vgl. Abbildung 1) soll ermittelt werden, zu wie viel Prozent die Schachtel 1 gefüllt ist, wenn sie mit zwei Quadraten und einem Dreieck gefüllt wird. Im zweiten Fall ist die kleinere Schachtel 2 mit einem Kreis und zwei Dreiecken gefüllt. Für eine klassische regelbasierte Füllstandsvorhersage könnte wie folgt vorgegangen werden: Zunächst wird die Größe und damit das Füllvolumen der Kartons bestimmt. Anschließend werden die einzelnen Produkte vermessen, um deren Volumen zu bestimmen. Aus der Summe der Volumina der einzelnen Produkte kann dann der Füllstand eines Kartons ermittelt werden. Die Berechnung des Füllstandes erfolgt nach vorher festgelegten Regeln. Somit steht hier die Modellierung der Regeln, nach denen der Füllstand bestimmt wird, im Fokus.

Im Gegensatz dazu würde die Bestimmung des Füllstandes mit einem KI-Modell mit folgender Vorgehensweise erreicht werden: Für eine Vielzahl von Szenarien werden die Eingabeparameter und die zugehörigen Ausgaben bestimmt. In diesem Fall wären die Eingabeparameter der jeweils verwendete Karton und die darin enthaltenen Produkte. Die zugehörige Ausgabe wäre die Füllmenge. Anhand der Eingaben und der zugehörigen Ausgaben wird ein KI-Modell trainiert. Dabei erlernt das Modell selbstständig die Regeln, anhand derer der Füllstand eines Kartons mit verschiedenen Produkten ermittelt werden kann.

Der entscheidende Vorteil gegenüber klassischen regelbasierten Prognosemodellen besteht darin, dass einer KI keine expliziten Regeln vorgegeben werden müssen. Stattdessen erkennt die KI selbstständig Zusammenhänge in den Daten. Dies ist besonders vorteilhaft, wenn Zusammenhänge zu komplex sind, um sie in festen Regeln abzubilden, oder wenn sich die Bedingungen häufig ändern. Allerdings geht dieses Vorgehen auch mit einer gewissen Intransparenz einher, da die Grundlage, warum eine Entscheidung von einer KI getroffen wird, für den Menschen oft nicht ersichtlich ist.

KI umfasst ein sehr breites Spektrum an Methoden und lässt sich je nach Aufgabenstellung in verschiedene Kategorien unterscheiden. So werden beim Überwachten Lernen (Supervised Learning) Modelle mit gelabelten Daten trainiert. Das bedeutet, dass jeder Eingabe eine feste Ausgabe zugeordnet ist. Die Aufgabe des KI-Modells besteht nun darin, die Zusammenhänge zwischen dem übergebenen Input und dem zugehörigen Output selbstständig zu erlernen. Handelt es sich bei der ermittelten Ausgabe um eine oder mehrere kontinuierliche Variablen, spricht man von Regressionsaufgaben. Das obige Beispiel der Füllstandsbestimmung ist also ein klassisches Regressionsproblem. Ist es dagegen das Ziel der KI, eine bestimmte Eingabe einer definierten Klasse zuzuordnen, spricht man von Klassifikation.

Im Gegensatz dazu arbeitet das Unüberwachte Lernen (Unsupervised Learning) ohne vordefinierte Ausgaben. Der KI werden also nur die Eingabedaten übergeben und das Modell muss selbstständig Zusammenhänge in den Datenpunkten erkennen. Klassische Methoden sind das Clustering oder die Dimensionsreduktion. Beim Clustering werden Datenpunkte, die einander ähnlich sind, zu Gruppen zusammengefasst. Bei der Dimensionsreduktion versucht die KI, bestimmte Charakteristiken in den Daten zu ermitteln. Clustering wird somit häufig zur Vereinfachung von großen und komplexen Datenmengen verwendet.

Das Deep Reinforcement Learning (DRL, Bestärkendes Lernen) stellt einen KI-Ansatz dar, der sich mit der Optimierung von Strategien beschäftigt. Dabei interagiert ein KI-Agent mit einer Umgebung. Dabei führt der Agent Aktionen aus, die auf dem Zustand der Umgebung basieren. Diese Aktionen werden mit einer Belohnungsfunktion bewertet. Ziel des DRL ist es, dass der Agent Aktionen auswählt, die die erhaltene Belohnung maximieren. Durch die Interaktion mit der Umgebung und den dafür erhaltenen Belohnungen kann der Agent eine optimierte Strategie erlernen.

Einsatzmöglichkeiten von KI in der Logistik

Die Einsatzmöglichkeiten von KI sind sehr vielseitig. Insbesondere die Logistik kann auf unterschiedliche Art und Weise davon profitieren. KI kann zum Beispiel für die Prognose von Prozess- und Auftragsdaten, der Erkennung von spezifischen Logistikkomponenten oder für die Steuerung von Prozessen oder dem Materiafluss verwendet werden.

Die Fähigkeit, aus Bildern relevante Daten zu extrahieren, kann in der Logistik für viele Anwendungsfälle von großem Nutzen sein. Durch Bilderkennung können Prozesse verbessert oder Fehler minimiert werden. Der LOCO-Datensatz (Logistics Objects in Context) [1] ist hierfür ein praktisches Beispiel, durch den es ermöglicht wird, bestimmte Logistikobjekte mithilfe von Kameras zu erkennen. Dieser Datensatz umfasst insgesamt ca. 38.000 Bilder, die in verschiedenen logistischen Umgebungen aufgenommen wurden. In Teilen des Gesamtdatensatzes sind logistikspezifische Objekte wie Paletten, Kisten, Gitterboxen, Gabelstapler und Hubwagen gekennzeichnet (vgl. Abbildung 2). Durch diese Annotation wird gekennzeichnet, wo sich ein spezifisches Objekt auf dem Bild befindet. Mithilfe dieser Datengrundlage lässt sich dann wiederum ein KI-Modell trainieren, welches die verschiedenen Objekte selbstständig erkennt.

Abbildung 2: Beispielbilder aus dem LOCO-Datensatz. Die Logistikobjekte sind durch sogenannte Bounding-Boxes (farbliche Rechteecke, die die jeweiligen relevanten Objekte beinhalten) gekennzeichnet.

Durch die Entwicklung solcher Bilderkennungswerkzeuge kann die Logistik davon profitieren, dass Objekte automatisch erkannt und richtig klassifiziert werden. So können unter anderem fahrerlose Transportsysteme selbstständig Objekte erkennen
und deren Position und Orientierung bestimmen. Dies erleichtert die Navigation sowie die Aufnahmen und den Transport von Waren und kann somit zu einer Verbesserung der Transportaufträge führen.

Darüber hinaus bietet der Einsatz von DRL in der Logistik neue Möglichkeiten, Prozesse wie den Materialfluss zu optimieren. Diese KI-Methode lernt optimierte Strategien durch die Interaktion mit ihrer Umgebung (vgl. Abbildung 3). Dabei führt ein Agent eine Aktion aus, die zu einer Veränderung der Umgebung führt. Die Aktionen des Agenten werden durch eine Belohnungsfunktion bewertet. Dabei werden sinnvolle Aktionen mit einer hohen Belohnung bewertet, während schlechte Aktionen nur mit einer geringen oder negativen Belohnung gewichtet werden. Welche Aktionen als gut oder schlecht bewertet werden, hängt vom Gesamtziel ab, das für die Optimierung des Systems erreicht werden soll. Der Agent versucht seine Strategie so anzupassen, dass er eine möglichst hohe kumulierte Belohnung erhält. Im Falle der Optimierung der Materialflusssteuerung innerhalb eines Warenlagers könnte das globale Ziel z. B. die Minimierung der Gesamttransportzeit der Fahrzeuge sein.

Abbildung 3: Komponenten des Deep Reinforcement Learnings [angelehnt an: Hao Dong, Zihan Ding, & Shanghang Zhang (Hrsg.), Deep Reinforcement Learning: Fundamentals, Research and Applications (Springer, 2020), S.48]

Ein Beispiel für einen praktischen Anwendungsfall könnte die Steuerung eines Gabelstaplers innerhalb eines Logistiklagers sein. Die Umgebung des DRL-Systems umfasst die Lagerhalle, den Gabelstapler und die Waren. Der Agent hat die Aufgabe, optimierte Transportaufträge zu generieren, so dass die Zeit, die der Gabelstapler zur Abarbeitung der Aufträge benötigt, minimiert wird. Um einen solchen Agenten zu trainieren, wird eine Simulation als weitere Komponente benötigt. Diese Simulation bildet alle Abläufe, Materialtransport sowie Randbedingungen ab, wodurch der Agent durch Interaktionen mit dem System in der Lage ist, eine optimierte Strategie zu erlernen. Während des Trainings versucht der Agent seine Strategie für die Transportplanung zu optimieren. Zu Beginn werden die Auftragsdaten für den Gabelstapler überwiegend zufallsbasiert generiert. Erst mit fortlaufendem Training erlernt der Agent anhand der erhaltenen Belohnungen, welche Aktionen langfristig zu einer hohen Belohnung führen und passt dementsprechend seine Strategie an. Durch dieses Vorgehen kann der Agent eine Strategie entwickeln, mit der die Materialflüsse verbessert und somit die Effizienz erhöht wird.

Dass DRL in realen Umgebungen erfolgreich eingesetzt werden kann, zeigen unter anderem verschiedene Roboterhersteller. Durch die Anwendung von DRL können sie die Bewegungsplanung von Robotern so optimieren, dass diese in dynamischen Umgebungen stabile und präzise Bewegungsabläufe durchführen, wodurch diese auf unerwartete Änderungen in ihrer Umgebung effizient reagieren können. Diese Fähigkeit, sich an sich schnell ändernde Bedingungen anzupassen, ist nicht nur in der Robotik von Bedeutung, sondern bietet insbesondere in der Logistik ein großes Potenzial, um Prozesse und Systeme zu optimieren.

Herausforderung und Zukunft von KI in der Logistik

Auch wenn KI gerade für die Logistik ein sehr großes Potenzial bietet, ist die Umsetzung dieser Technologie häufig von großen Herausforderungen geprägt. So ist die Implementierung von KI-Lösungen in der Regel sehr komplex und ressourcenintensiv. Das Training leistungsfähiger KI-Modelle erfordert häufig eine Vielzahl von Rechenschritten. Leistungsfähige Hardwarekomponenten sind daher für viele KI-Projekte unerlässlich, um das Training der KI in praktikablen Zeiträumen zu ermöglichen. Generell sind Daten die wichtigste Komponente für die Realisierung von KI. Sie stellen aber auch häufig das größte Hindernis bei der Durchführung von KI-Projekten dar. Stehen zu wenige Daten zur Verfügung oder sind diese von zu schlechter Qualität, ist die Prognosefähigkeit einer KI stark eingeschränkt. Damit eine KI in der Lage ist, aus Daten sinnvolle Zusammenhänge zu lernen und damit eine Optimierung zu ermöglichen, müssen genügend Daten in ausreichender Qualität vorhanden sein. Die Erfassung und Vorverarbeitung von Daten stellt daher einen der wichtigsten Entwicklungsschritte bei der Umsetzung von KI dar.

Auch wenn die Implementierung von KI derzeit noch mit Herausforderungen verbunden ist, bietet der Einsatz dieser Technologie einen entscheidenden Mehrwert, um die Logistik effizienter und sicherer zu gestalten. Darüber hinaus kann KI in dynamischen Situationen dazu beitragen, sinnvolle Lösungen zu generieren. Viele KI-Modelle sind zudem als Open-Source-Lösungen frei verfügbar und können individuell an die eigenen Prozesse angepasst werden. Dies verbessert nicht nur die Integrationsfähigkeit von KI für Unternehmen, sondern stärkt auch die Innovationskraft, da bestehende Modelle weiterentwickelt und optimiert werden können. Mit der fortschreitenden Entwicklung von KI-Technologien und der zunehmenden Verfügbarkeit leistungsfähiger Hardware ist die Logistik ein Bereich, der von den KI-Entwicklungen profitieren wird und dadurch auch effizienter und vielseitiger werden kann.

[1] C. Mayershofer, D. -M. Holm, B. Molter and J. Fottner, „LOCO: Logistics Objects in Context,“ 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 2020, pp. 612-617, doi: 10.1109/ICMLA51294.2020.00102

In der heutigen schnelllebigen Softwarelandschaft kann die Auswahl des richtigen Dienstleisters zu einer echten Herausforderung werden. Angesichts der Vielzahl an Anbietern ist es entscheidend, sorgfältig vorzugehen, um sicherzustellen, dass das Softwareprojekt nicht nur den gewünschten Nutzen bringt, sondern auch im vorgegebenen Zeitrahmen und Budget bleibt. Auf welche Faktoren Sie achten sollten, wird in diesem Artikel beschrieben.

Die Gründe für das Scheitern eines Softwareprojekts sind vielfältig. Die häufigsten lassen sich oft auf diese Kernbereiche zurückführen:

  • Unklare Anforderungen
  • Mangel an Fachkenntnissen
  • Unterschiedliche Erwartungen und falsche Projektbehandlung
  • Fehlendes Engagement der Stakeholder
  • Überschreitung von Fristen und Budget
  • Schlechte Kommunikation
  • Keine nachträgliche Unterstützung oder Aktualisierungen nach der Implementierung
  • Mangelhafte Sicherheitsmaßnahmen

Daher ist es unerlässlich, einige grundlegende Prinzipien bei der Auswahl eines geeigneten Software-Dienstleisters zu beachten. Diese Prinzipien umfassen technische Kompetenzen, Arbeitskultur, Kommunikationsstil, langfristige Unterstützung und robuste
IT-Sicherheitsmaßnahmen.

Technische Kompetenzen erkennen

Einer der ersten Schritte bei der Auswahl eines Software-Dienstleisters besteht darin, die Fachkompetenzen und Erfahrungen des potenziellen Partners gründlich zu prüfen. Hierfür gibt es verschiedene Indikatoren:

  • Zertifikate und Qualifikationen: Diese belegen, dass die Firma über formale Qualifikationen verfügt, z. B. in Agile, Scrum, Microsoft, AWS usw. und somit hohe und moderne Arbeitsstandards sowie Best Practices einhält.
  • Portfolio und Referenzen: Ein Blick in das Portfolio der Firma und ihre bisherigen Projekte gibt Aufschluss darüber, ob diese Produkte auch für den eigenen Use Case relevant sein könnten. Ebenso sind Kundenbewertungen und Referenzen wertvolle Indikatoren für die Qualität der Zusammenarbeit und die Zufriedenheit früherer Kunden.
  • GitHub-Repositorien oder Mustercode: Diese geben Einblick in die Qualität und das Niveau des Codes der Firma, was eine direkte Bewertung der Codequalität ermöglicht.

All diese Punkte helfen dabei zu erkennen, ob eine Firma die höchsten und modernsten Arbeitsstandards einhält und über die benötigten Erfahrungen verfügt.

Arbeitskultur und Kommunikationsstil

Eine erfolgreiche Zusammenarbeit hängt maßgeblich von der Kommunikation ab. Dazu gehört die Erstellung eines konkreten Plans, der Timelines, Fristen, Budget und die zu liefernden Produkte beinhaltet. Durch das klare Abstecken der Eckdaten und Erwartungen des Projekts können beide Seiten ihre Erwartungen abstimmen und ihre Vorgehensweise entsprechend anpassen. Dies ermöglicht es, den Überblick über den Projektablauf zu behalten und bei Bedarf Anpassungen vorzunehmen.

Ein weiterer Aspekt ist die Berücksichtigung von Arbeitsmethoden, die mittlerweile zu Standards geworden sind. Dazu gibt es einige wichtige Fragen, die bei der Bewertung der Arbeitskultur berücksichtigt werden sollten:

  • Welche Projektmethoden werden genutzt? Der Einsatz moderner Projektmanagement-Methoden wie Agile, Scrum oder Kanban kann ein Hinweis darauf sein, dass der Dienstleister flexibel, transparent und effizient arbeitet.
  • Wie wird über Fortschritte informiert? Regelmäßige Meetings oder Status-Updates sind essenziell, um den Projektverlauf zu überwachen und bei Abweichungen schnell eingreifen zu können.
  • Ist der Dienstleister in der Lage, sich an Ihre Unternehmenskultur anzupassen? Unterschiedliche Unternehmen haben unterschiedliche Kommunikationsstile und Hierarchien. Ein guter Dienstleister sollte in der Lage sein, sich flexibel auf Ihre Anforderungen einzustellen.

Langfristige Unterstützung und Code-Eigentümerschaft

Technologie entwickelt sich ständig weiter – neue Methoden werden in Produkte eingebettet, um sie effizienter und zukunftssicherer zu machen. Ein Softwareprojekt endet nicht mit der Auslieferung des Endprodukts. Software ist ein lebendiges Produkt, das regelmäßig aktualisiert und an neue Anforderungen angepasst werden muss. Daher ist es ratsam, sicherzustellen, dass auch nach Projektabschluss und erfolgreicher Implementierung im Unternehmenssystem weiterhin Unterstützung vom Dienstleister angeboten wird, damit das Produkt langfristig relevant und aktuell bleibt.

Darüber hinaus ist es wichtig, die Eigentümerschaft des geschriebenen Codes zu klären. Wenn der Code im Besitz des Software-Dienstleisters bleibt, könnte es schwierig sein, Änderungen vorzunehmen, und es könnten zusätzliche Kosten für eine Lizenzierung entstehen.

IT-Sicherheitsmaßnahmen beachten

In der modernen Software-Entwicklung sind Sicherheitsfragen von größter Bedeutung. Bei der Auswahl eines Dienstleisters sollten Sie darauf achten, dass dieser strenge Sicherheitsprotokolle einhält, um sensible Informationen und geistiges Eigentum zu schützen. Protokolle wie OWASP (The Open Web Application Security Project) können sicherstellen, dass vertrauliche Daten nach höchsten Standards geschützt werden und die eingesetzten Protokolle ständig verbessert werden.

Rote Flaggen bei Dienstleistern

Anzeichen, die auf eine unzureichende Qualität der Leistungen eines Software-Dienstleisters schließen lassen, sind beispielsweise:

  • Überholtes Web-Development: Ein Software-Entwickler, dessen Website veraltet oder gar nicht funktionsfähig ist.
  • Mangelhafte Kommunikation: Firmen, die schwer erreichbar sind oder nur sporadisch antworten, werden wahrscheinlich auch während des Projekts unzureichend kommunizieren – insbesondere hinterher, wenn die Rechnung gestellt ist.
  • Vages Portfolio und unklare Beschreibungen: Zum Beispiel ein Software-Entwickler, der behauptet, relevante Erfahrung in der gewünschten Branche zu haben, aber keine konkreten Beispiele oder Referenzen liefern kann.
  • Schlechte Rezensionen: Negative Rückmeldungen von ehemaligen Kunden, die ihre Unzufriedenheit mit dem Dienstleister ausdrücken.
  • Übermäßig niedrige Preise: Wenn ein Anbieter weit unter dem branchenüblichen Preisniveau liegt, kann dies ein Hinweis auf mangelnde Qualität, fehlende Erfahrung oder unzureichende Ressourcen sein. Oft werden Projekte dadurch teurer, weil nachträglich Fehler behoben oder Leistungen ergänzt werden müssen.
  • Unrealistische Zeitpläne und Versprechen: Anbieter, die kurze Fristen oder garantierten Erfolg versprechen, sollten kritisch hinterfragt werden. Unrealistische Zeitpläne können zu überstürzten und minderwertigen Lösungen führen.

Die Wahl des richtigen Software-Dienstleisters ist entscheidend für den Erfolg eines Projekts. Eine sorgfältige Prüfung technischer Kompetenzen, Arbeitskultur, Kommunikationsstil, langfristiger Unterstützung und Sicherheitsmaßnahmen hilft, das Risiko von Fehlentwicklungen und Budgetüberschreitungen zu minimieren. Ebenso wichtig ist es, auf Warnsignale zu achten und eine klare, transparente Kommunikation von Anfang an sicherzustellen. So können Unternehmen sicherstellen, dass ihre Softwareprojekte nicht nur erfolgreich abgeschlossen werden, sondern auch langfristig Bestand haben und nachhaltig weiterentwickelt werden können.

Das Stichwort „Tokenisierung“ findet sich seit einiger Zeit immer öfter im Zusammenhang mit der Digitalisierung von Finanzdienstleistungen. Im vorliegenden Artikel werden Definition, potenzielle Nutzungsmöglichkeiten, derzeitige Einsatzhürden und zukünftige Einschätzungen beleuchtet. Voranzustellen ist dabei, dass sich das Gebiet der Tokens derzeit noch im „Pionier-Stadium“ befindet mit einer Vielzahl von Prototypen, Pilotprojekten und einzelnen produktiven Einsätzen. Somit gehen auch die Meinungen zu Definitionen, Prozessen, Techniken, juristischer Einordnung, Wirtschaftlichkeit und Akzeptanz noch recht weit auseinander. Dennoch wird insgesamt eine dynamische Entwicklung erwartet.

Was sind Tokens und welche Ausprägungen gibt es?

Tokens sind digitale Objekte, die eigenständig einen Wert darstellen. Dieser Wert kann ein rein digitales Objekt sein, wie z. B. ein Bitcoin oder ein digitales Kunstwerk. Tokens können aber auch physische Objekte im Sinne eines „digitalen Zwillings“ spiegeln, zum Beispiel eine Immobilie. Mithilfe von Tokenisierung können also große Einheiten in kleinere Teile aufgeteilt und dadurch einer größeren Anzahl von Personen zugänglich gemacht werden. Mit derlei Tokens werden also digitale Abbilder eines realen Gegenstands oder Wertes erzeugt.

Diese digitale Abbildung realer Werte erfolgt dabei beispielsweise auf einer Distributed Ledger Technologie (DLT) eben in Form sogenannter Tokens und ermöglicht insbesondere eine rechtssichere Übertragung dieser digitalen Abbilder. Da sich nahezu alle Gegenstände oder Finanzwerte in dieser Form digital abbilden, also tokenisieren lassen, wird in dieser Technologie mit ihren Produkt- und Entwicklungsmöglichkeiten großes Potenzial gesehen.

Exkurs: Distributed Ledger Technologie (DLT)

Als „Distributed Ledger“ oder „Verteiltes Kontenbuch“ wird eine spezielle Form der elektronischen Datenverarbeitung und -speicherung bezeichnet. Es handelt sich um eine dezentrale Datenbank, in der Teilnehmer eines Netzwerks eine gemeinsame Schreib- und Leseberechtigung haben.

Während es in einer zentral verwalteten Datenbank eine entsprechende zentrale Instanz gibt, die neue Einträge in der Datenbank vornimmt, gibt es in einer dezentralen Datenbank eine solche Instanz nicht. Jeder Teilnehmer kann jederzeit neue Datensätze hinzufügen. Dies stößt jeweils einen Aktualisierungsprozess an, damit für alle Teilnehmer stets der aktuelle Stand der Datenbank vorliegt.

In Bezug auf die Zugangsmöglichkeiten für Teilnehmer unterteilen sich Distributed Ledgers in „permissioned“ und „unpermissioned“ Ledgers. In permissioned Ledgers sind die Teilnehmer in der Regel registriert und müssen bestimmte Voraussetzungen für den Zugang erfüllen. Zu unpermissioned Ledgers hat jeder Teilnehmer freien Zugang (z. B. zur Blockchain im Bitcoin-Netzwerk).

Tokens können erworben, gehalten und i. d. R. weitergegeben werden, auch auf Marktplätzen oder Börsen. Jemand, der Tokens übernimmt, akzeptiert diese und den durch diese Tokens dargestellten Wert. Der Übernehmende erhält Tokens direkt von E-Wallet (auch virtuelle Geldbörse genannt) zu E-Wallet oder auch als Anhang in einer E-Mail ähnlich wie ein PDF-Dokument. Dabei gibt es keine explizite Rückversicherung bei einer zentralen Stelle, ob diese Tokens „echt“ oder „wertig“ sind, der Übernehmende zieht die Tokens einfach auf den Desktop seines Laptops, PCs etc. oder in seine E-Wallet.

Vergleichbar ist dieser Vorgang mit der Übernahme eines herkömmlichen Geldscheins. Dieser wird stets akzeptiert, ohne dass es bei der Übernahme zu einer Prüfung durch die Deutsche Bundesbank kommt. Der Übernehmende vertraut dem Gegenüber und steckt den Schein einfach in seine physische Geldbörse.

Tokens zeichnen sich dadurch aus, dass sie bestimmte Eigenschaften haben. Sie sind u. a.

  • Übertragbar: Dies ist bei den meisten Tokens gegeben. Voraussetzung ist, dass der rechtliche bzw. technische Wesensgehalt des Tokens unverändert bleibt.
  • Teilbar: Mithilfe der Tokenisierung können die damit abgebildeten Vermögenswerte in beliebige Stückelungen geteilt und gehandelt werden.
  • Löschbar („burned“): Hierbei handelt es sich um eine Methode, Tokens dauerhaft aus dem Umlauf zu nehmen und diese z. B. an eine nicht auffindbare Adresse zu senden. Dies wird insbesondere mit dem Ziel getan, um das Gesamtangebot eines Tokens zu verknappen und ihn dadurch wertvoller zu machen.

Zusätzlich ist die Fungibilität, also die Austauschbarkeit, des Tokens von großer Bedeutung. Ein Token kann fungibel (ganzteilig oder anteilig), nicht-fungibel (ganzteilig, anteilig, einzigartig) oder hybrid ausgestaltet sein:

  • Fungibel: Ein Token ist beliebig austauschbar. Fungible Tokens bilden i. d. R. Kryptowährungen, Wertpapiere oder Devisen ab. Beim Besitz oder Erhalten entsprechender Tokens ist es unerheblich, welcher Token von wem stammt, da sie austauschbar und nicht voneinander zu unterscheiden sind.
  • Nicht-fungibel: Ein Token ist nicht austauschbar. Er existiert nur genau einmal und ist auch genau einem Besitzer zuzuordnen. Zu erklären ist ein nicht-fungibler Token z. B. als digitaler Besitznachweis von digitaler Kunst, digitalen Tickets oder digitalen Anteilen von Immobilien.
  • Hybrid: Hierbei handelt es sich um Mischformen der vorgenannten Ausprägungen, bei denen der Schwerpunkt auf unterschiedlichen Funktionen liegen kann, sodass z. B. im Einzelfall zu entscheiden ist, um welche Kategorie Token es sich letztlich handelt.


Exkurs: Die zugrundeliegende Technologie der Smart-Contracts

Fungible und nicht-fungible Tokens bestehen als sogenannte Smart-Contracts auf der Blockchain. Smart-Contracts kann man als Computerprogramme (Code) verstehen, die unter bestimmten Bedingungen abgerufen werden und dabei bestimmte Funktionen erfüllen.

Die Unveränderlichkeit und Transparenz der Blockchain ist dabei ein Kernelement und trägt zu den neuartigen Anwendungsfällen von Tokens bei. Die Technologie von fungiblen und nicht-fungiblen Tokens wurde erstmals auf der Ethereum-Blockchain umgesetzt. Auch der Bitcoin gilt im weiteren Sinne als fungibler Token.

Es lassen sich des Weiteren drei Gruppen von Wert-Tokens unterscheiden:

  • Payment-Tokens: Payment Tokens dienen primär dem Zahlungsverkehr, können aber – wenn sie länger gehalten werden – auch die Eigenschaft der Wertaufbewahrung eines Finanz- bzw. Security-Tokens abbilden. Sie unterscheiden sich nach Herausgeber (Emittent) und Verwendungszweck.
    Payment-Tokens können privatwirtschaftlich oder öffentlich herausgegeben sein. Bekannte Beispiele für privatwirtschaftliche Token sind sogenannten Kryptowährungen ohne Referenzwert wie z. B. Bitcoin, Ethereum oder Ripple.
    Ein weiteres Beispiel für einen privatwirtschaftlichen Token ist der USD Coin, der durch das Unternehmen Circle emittiert wird. Hierbei handelt es sich um einen sogenannten Stablecoin, der an eine Wertanlage (in dem Fall der US-Dollar) als Referenzwert gebunden ist, um dadurch die Wert-Schwankungen des Stablecoins selbst zu minimieren.
    Ein Beispiel für einen öffentlichen Token ist ein möglicher zukünftiger digitaler Euro, der durch die Europäische Zentralbank emittiert werden würde.
  • Finanz- oder Security-Tokens: Finanz- oder Security-Tokens sind digitale Wertpapiere. Erscheinungsformen sind Anleihe-Tokens wie z. B. digitale Schuldverschreibungen sowie Aktien-Tokens (Equity-Tokens). In die Gruppe der digitalen Wertpapiere fallen auch Commodity-Tokens zur Abbildung von Investitionen in Rohstoffe sowie Immobilien-Tokens. Auch sogenannte NFTs (Non Fungible Tokens) finden sich hier, die z. B. digitale Kunstobjekte abbilden.
  • Sonstige Tokens: Dies sind in der Regel Utility-Tokens, die diverse qualitative, also nicht finanziell motivierte, Nutzungsrechte garantieren. Beispiele sind Tokens als Ersatz für die physische Saisonkarte eines Fußballvereins mit Zusatzleistungen rund um den Verein oder der Token einer Musik-Band, in dem das Recht auf den vorzeitigen Bezug des neuen Albums sowie ein Konzertbesuch verankert sind.

Wo zeigen sich Nutzen und Herausforderungen von Tokenisierung?

Tokens sind ein wichtiger Teil der digitalen Welt. Sie erlauben die durchgehende Digitalisierung von Prozessen, ohne Medienbrüche oder notwendige Übergänge in eine analoge Welt. Sie dienen dabei als digitale Wertspeicher, die (fast) überall eingesetzt werden können.

Damit einhergehend werden deutlich geringere Kosten bei Prozessen und eine deutlich schnellere Abwicklung als Vorteile genannt sowie eine vollständige Transparenz, die bei der Nutzung von Tokens gegeben sein soll.

Auch wenn die Technologie insgesamt einen breiten Einsatz von Tokens ermöglichen könnte, sind derzeit allerdings noch eine Reihe von Herausforderungen zu lösen. So sind die Protokolle z. B. für die genannten Smart-Contracts noch nicht ausreichend standardisiert, auch in Bezug auf die Regulation sind noch Fragen offen, die derzeit erst schrittweise beantwortet werden. Aktuell können die von den Befürwortern der Tokenisierung theoretisch möglichen Kosten- und Zeiteinsparungen bei der Abwicklung ebenfalls noch nicht vollständig umgesetzt werden.

Fazit – Akzeptanz noch ausstehend

Eine breite Akzeptanz von Tokenisierung bei den denkbaren Einsatzmöglichkeiten ist derzeit noch unsicher und insbesondere abhängig von schlanken und wenig aufwändigen Prozessen. Ob die Digitalisierung physischer Objekte in absehbarer Zeit für eine ausreichend große Zielgruppe attraktiv sein wird, bleibt abzuwarten. Tokens haben allerdings durchaus Potenzial und könnten als Träger von Werten wichtige Komponenten einer zunehmend digitalisierten Welt werden.


Quellen:

Penzel, Hans-Gert: Tokenisierung von Vermögenswerten: So funktionierte sie & so wird die Zukunft des Eigentums wirklich aussehen, https://www.it-finanzmagazin.de/token-zukunft-ibi-research-152539/, Abruf am 15.01.2025.

Metzger, Jochen: Distributed Ledger Technologie (DLT), https://wirtschaftslexikon.gabler.de/definition/distributed-ledger-technologie-dlt-54410, Abruf am 15.01.2025.

Sie möchten Ihre Lagerbestände verringern und trotzdem hohe Verfügbarkeiten erreichen? Diese Mehrzieloptimierung bedeutet bei vielen kleinen und mittleren Unternehmen (KMU) hohe händische Aufwände. In diesem Beitrag erfahren Sie, welche Vorteile der Einsatz von KI-Methoden bei der teilautomatisierten Bestandsplanung im Großhandel bringt.

Die optimale Steuerung von Lagerbeständen ist aufgrund komplexer Einflussfaktoren eine zentrale Herausforderung der gesamten Supply-Chain. Der Großhandel spielt dabei eine zentrale Rolle, indem er als Zwischenhändler zwischen Herstellern und Endverbrauchern als Puffer agiert. Viele mittelständische Großhändler zeichnen sich hier durch ihre Flexibilität, spezialisiertes Fachwissen und Kundennähe aus. Sie tragen wesentlich zur wirtschaftlichen Stabilität und Innovationskraft bei.

Hohe Aufwände für exakte Planung

Für viele mittelständische Großhändler stellt das Bestandsmanagement einen der Grundpfeiler für deren Wettbewerbsfähigkeit dar. Es hat den Zweck, Ware und Materialien in der optimalen Menge zum richtigen Zeitpunkt zu bestellen und am richtigen Ort für den Bedarfsfall bereitzustellen. Durch die zeitliche und mengenmäßige Differenz von eingehenden und ausgehenden Materialflüssen eines Lagers erfüllt es eine Pufferfunktion. Die Entscheidung, welche Menge eines Artikels zu welchem Zeitpunkt (nach-)bestellt werden soll, hängt von einer Vielzahl von Faktoren ab: Einkaufskonditionen und verfügbare Lagerkapazitäten müssen hier ebenso berücksichtigt werden, wie die prognostizierte Nachfrage und Wiederbeschaffungszeiten sowie gewünschte Warenverfügbarkeit (Servicelevel). Die zuverlässige und genaue Prognose der Nachfrage ist dabei noch eine Herausforderung für sich.

Die Aufwände zur Erstellung und Überprüfung der Prognosen sind bei einer wöchentlichen oder monatlichen Erstellung und einer fünf- bis sechsstelligen Artikelanzahl manuell nur mit hohem Personaleinsatz zu bewältigen. Immer wieder kommt es zu individuellen Schwankungen unter den Planungsmitarbeitenden, da persönliche Einschätzungen und Ziele bei der manuellen Planung starke Einflüsse haben können.

Zudem fällt es auch erfahrenem Fachpersonal schwer, die Schwankungen in den Bedarfen richtig einzuschätzen und alle Einflussfaktoren wie Einkaufskonditionen, angestrebte Kapitalbindung und Lagerkapazität einzubeziehen. Die Folge sind zu hohe Sicherheitsbestände und damit hohe Kosten: Neben Lagerraum-, Personalkosten sowie den Opportunitätskosten des gebundenen Kapitals (Working Capital) birgt ein hoher Sicherheitsbestand zusätzlich Risiken durch Wertveränderungen oder ausbleibende Nachfrage.

Systemische Unterstützung liefern dabei Enterprise-Resource-Planning (ERP)-Systeme und erweiterte Dashboards. Bei vielen mittelständischen Großhändlern kommen hier Eigenentwicklungen oder angepasste ERP-Systeme zum Einsatz, da die jeweiligen Anforderungen sehr spezifisch sind. Da die meisten ERP-Systeme oftmals eine einfache Punktprognose, also einen einzelnen Prognosewert, des zukünftigen Bedarfes pro Artikel ausgeben, werden Unsicherheiten in der Nachfrage sowie vorhandene zusätzliche Daten vernachlässigt.

KI-basierte Prognosemethoden

Neue KI-Ansätze können die Bestandsplanung im Großhandel erheblich verbessern. Durch den Einsatz von KI lassen sich große Datenmengen analysieren und präzise Vorhersagen treffen, die menschliche Fachkräfte allein nicht bewältigen könnten. Beispielsweise können sie saisonale Schwankungen, Promotionen und Produkthierarchien berücksichtigen und die Bestandsplanung dynamisch anpassen. Diese Technologien ermöglichen es, Trends und Muster im Kaufverhalten frühzeitig zu erkennen und die Lagerbestände entsprechend anzupassen.

Bisher kommen in den meisten Fällen simple Prognosemethoden zum Einsatz, wie exponentielle Glättung oder ARIMA (Autoregressive Integrated Moving Average). Diese setzen jedoch oft lineare Beziehungen voraus, während elaboriertere KI-Methoden auch nichtlineare Muster erkennen können und besser mit einer größeren Anzahl von Merkmalen und Variablen umgehen können. In vielen Anwendungsfällen bieten einfache Methoden keine ausreichend hohe Genauigkeit, insbesondere bei komplexen Datensätzen. Außerdem gibt nicht ein einzelnes Modell die beste Prognose für alle betrachteten Artikel aus. Vielmehr muss für jeden Artikel bzw. für jeden Absatzkurven-Typ ein passendes Modell verwendet werden.

Prognosen sind immer mit einer gewissen Unsicherheit verbunden (engl. forecast uncertainty). In der Praxis kann nicht davon ausgegangen werden, dass eine Punktprognose genau zutrifft. Häufig wird ein zusätzlicher Sicherheitsbestand eingeplant, um Nachfragen, die über dem Prognosewert liegen, bedienen zu können. Die richtige Bestimmung dieses Sicherheitsbestands sollte dabei auf einer datengetriebenen Einschätzung der Prognoseunsicherheit und damit des Out-of-Stock-Risikos beruhen, was in der Praxis selten der Fall ist.

Auch um ein angestrebtes Servicelevel zu erreichen, ist eine korrekte Abschätzung der Prognoseunsicherheit unerlässlich. Neueste Prognosemethoden geben nicht nur ein, sondern hunderte Szenarien für die zukünftige Nachfrage aus. Anstatt nun z. B. einen Mittelwert all dieser möglichen Szenarien auszugeben und diesen als gegeben anzunehmen, kann die Streuung all dieser Szenarien als Prognoseunsicherheit interpretiert werden. Je nach Strategie kann sich nun gegen alle möglichen Zukunftsszenarien abgesichert oder ein bestimmtes Servicelevel erreicht werden, in dem z. B. 90 % aller Szenarien bedient werden sollen.

Kombination von Prognosen und mathematischer Optimierung

Die präzisen KI-basierten Prognosen allein können eine große Entscheidungsunterstützung bieten. Um allerdings ein höheres Automatisierungslevel und somit geringen manuellen Aufwand zu erreichen, nutzt man am besten die Kombination aus Prognosen und mathematischer Optimierung.

Dabei fließen die oben beschriebenen Prognosen in ein Optimierungsmodell ein, welches die optimalen Bestellmengen und -zeitpunkte für alle Artikel auf Basis der vorhandenen Daten bestimmt. Mathematisch optimal ist die Bestellstrategie dann, wenn die vordefinierte Zielsetzung bestmöglich erfüllt wird. Die Zieldefinition umfasst beispielsweise die Höchsteinkaufspreise oder Mindestverfügbarkeitsanforderungen. Um dieses Ziel vollumfänglich abzudecken, müssen eine Vielzahl an Faktoren und Daten berücksichtigt werden. Neben den Prognosen spielen für die Deckung der Nachfrage unter anderem ausstehende Bestellungen, Lagerbestände, Wiederbeschaffungszeiten sowie Sicherheitsbestände eine entscheidende Rolle. Die genauen Losgrößen werden im Wesentlichen durch die Einkaufsbedingungen, Lagerkapazitäten und die Kapitalbindungskosten bestimmt.

Durch die Erweiterung des Modells zu einem stochastischen Optimierungsmodell können auch Unsicherheiten in der Bedarfsprognose, also unterschiedliche Szenarien der zukünftigen Artikelnachfrage, berücksichtigt werden. Dadurch ist der ermittelte Bestellvorschlag nicht nur auf einen Einzelfall ausgerichtet, sondern zielt darauf ab, im Mittel über alle möglichen Realisierungen eine gute Entscheidung zu treffen und ist so gegenüber Unsicherheiten abgesichert.

Solche kombinierten Prognose-Optimierungsmodelle generieren automatisiert innerhalb weniger Sekunden einen Bestellvorschlag für die Disponent:innen, der die messbaren Praxisanforderungen optimal erfüllt. Das stellt eine erhebliche Unterstützung für den Arbeitsalltag in der Disposition und im Einkauf dar. In einer theoretischen Evaluation der KI-Bestellstrategie im Vergleich zur Bestellung nach Bedarf konnten durch die Automatisierung 20 % – 30 % der Arbeitszeit in der Disposition eingespart werden. Zeitgleich konnten die Einkaufskosten, welche durch die Aufwände bei der Disposition und vor allem beim Transport entstehen, um bis zu 3 % gesenkt werden. Außerdem ergab sich in den theoretischen Evaluationen ein einmaliges Einsparpotenzial von 10 % – 30 % der durchschnittlichen Bestandskosten je Artikel. Die hohe Varianz des Einsparungspotenzial liegts an den unterschiedlich fortschrittlichen Planungsprozessen in den untersuchten Großhändlern.

Einbettung von KI-Verfahren in eigene Systeme

In Echtzeitanwendungen wie der Bestandsplanung ist die Anbindung an das unternehmenseigene ERP-System sowie an zusätzliche Datenquellen unverzichtbar. Diese Integration lässt sich zum Beispiel effizient durch den Einsatz von Mikroservice-Architekturen realisieren. Die Software kann damit sowohl beim Großhändler lokal (on-premise) als auch in der Cloud gehostet werden. Durch die Kapselung (Containerisierung) können einzelne Services wie „Datenanbindung“ oder „KI-Modell-Training“ unkompliziert und individuell aktualisiert, modular ausgetauscht und hinsichtlich der Rechenleistung ressourcenschonend skaliert werden.

Für KMU ist es meist nicht möglich, eine eigene KI-Abteilung aufzubauen. Deshalb empfiehlt es sich hier mit Organisationen zusammenzuarbeiten, welche Expertise in KI und vor allem Machine Learning Operations (MLOps) vorweisen können. Durch MLOps lassen sich Wartung und Instandhaltung der KI-Anwendung automatisieren, z. B. durch ereignisgesteuertes Re-Training. Dadurch wird langfristig ein wichtiges Ziel erreicht: Den Betrieb solcher Lösungen in Zeiten des KI-Fachkräftemangels sicherzustellen.

Für die bessere Akzeptanz für die KI-Lösungen ist vor allem in der Einführungsphase eine teilautomatisierte Lösung zu empfehlen, bei der die Fachkräfte die KI-Vorschläge prüfen und freigeben. Teilautomatisierte KI-Lösungen beziehen sich auf Systeme, die einige Aufgaben oder Prozesse mithilfe von Künstlicher Intelligenz (KI) automatisieren, während andere Aufgaben weiterhin menschliches Eingreifen erfordern. Diese Art von Lösungen kombiniert die Effizienz und Präzision von KI mit der Flexibilität und dem Urteilsvermögen menschlicher Expertise. Bei der Vielzahl an Artikeln im Großhandel kann ein KI-basiertes Bestandsplanungstool anzeigen, bei welchen Artikeln eine größere Unsicherheit herrscht und diese dem Fachpersonal explizit zur Prüfung vorlegen.

Fazit – Schritt für Schritt zum Einsatz

Der Einsatz von KI in der Bestandsplanung bietet KMU zahlreiche Vorteile. Er steigert die Effizienz durch Automatisierung und Optimierung von Prozessen, ermöglicht genauere Bedarfsprognosen und eine bessere Lagerverwaltung. Zudem erlaubt die KI die Auswertung großer Datenmengen in Echtzeit, was zu schnelleren und fundierteren Entscheidungen führt, und hilft, Risiken wie Bestandsengpässe und Überbestände zu minimieren. Ein weiterer Vorteil ist die Skalierbarkeit der KI-Systeme, die an veränderte Geschäftsanforderungen angepasst werden können, ohne signifikant zusätzliche Ressourcen zu benötigen.

Dennoch gibt es auch einige Nachteile. Die Implementierung von KI-Lösungen kann kostspielig sein, insbesondere in der Anfangsphase, und die Integration in bestehende Systeme gestaltet sich oft komplex und zeitaufwendig. Die Leistungsfähigkeit der KI hängt stark von der Qualität und Quantität der verfügbaren Daten ab und es kann schwierig sein, qualifizierte Fachkräfte zur Entwicklung und Wartung der Systeme zu finden. Zudem erfordern KI-Systeme regelmäßige Wartung und Aktualisierung, um ihre Effektivität zu bewahren.

Zusammenfassend lässt sich sagen, dass der Einsatz von KI in der Bestandsplanung für KMU sowohl erhebliche Vorteile als auch einige Herausforderungen mit sich bringt. Trotz dieser Herausforderungen überwiegen die Vorteile, insbesondere durch die langfristige Zeit- und Kosteneinsparung. Unternehmen sollten daher sorgfältig abwägen und gegebenenfalls schrittweise vorgehen, um die Potenziale der KI bestmöglich zu nutzen.

Höhere Stromnebenkosten und unvorhersehbar steigende Kosten für fossile Brennstoffe werden mittelständische Unternehmen in den kommenden Jahren vor große Herausforderungen stellen. Gleichzeitig bieten Sie aber auch erhebliche Chancen, denn viele regulatorische Entwicklungen der kommenden Jahre sind bereits jetzt abzusehen. Durch den Einsatz intelligenter Energiemanagement-Systeme (EMS), einer guten Energiedatenbasis und der Kopplung zwischen den Sektoren Wärme, Strom und Mobilität können durch vorausschauende Planung Energiekosten gesenkt, zusätzliche Einnahmequellen erschlossen und die CO2-Bilanz verbessert werden. Digitale Werkzeuge unterstützen verbraucherorientierte Strategien zur Dekarbonisierung und helfen dabei Maßnahmen frühzeitig und langfristig zu bewerten, damit Investitionen richtig gesetzt und nachhaltige Kosteneinsparungen und die Wettbewerbsfähigkeit gesichert werden.

Nachhaltigkeit und Klimaschutz sind nicht nur zentrale politische Ziele sondern seit dem Urteil des Bundesverfassungsgerichtes vom März 2021 auch offiziell eine Verpflichtung aus dem deutschen Grundgesetz.[1] Die Bundesregierung hat sich daher auf einen ambitionierten Reduktionspfad der Treibhausgasemissionen verpflichtet, um bis 2045 klimaneutral zu sein, während Bayern dieses Ziel sogar bereits bis 2040 erreichen will. Diese ambitionierten Klimaziele erfordern einen schnellen und umfassenden Umbau der Energieinfrastruktur und der -gesetzgebung und stellen insbesondere auch kleine und mittlere Unternehmen (KMU) in ihrem Alltag zukünftig vor immer neue Herausforderungen.

Für KMU, die traditionell flexibel und innovativ sind, bietet die Energiewende jedoch auch zahlreiche Chancen. Die Notwendigkeit, den Energieverbrauch zu senken und den CO2-Ausstoß zu reduzieren kann als Katalysator für Innovationen und Effizienzsteigerungen dienen. Unternehmen, die schon früh proaktiv agieren und nicht nur auf gesetzliche Maßnahmen reagieren, können langfristig mit Klimaschutz sogar Wettbewerbsvorteile sichern und Kosten senken. Langfristiges, strategisches Handeln anstelle von reaktiven Maßnahmen wird hierbei entscheidend sein, um auf die bevorstehenden Herausforderungen durch die Gesetzgebung und technische Vorgaben vorbereitet zu sein und diese im Interesse des Unternehmens bestmöglich umzusetzen.

Neue gesetzliche Rahmenbedingungen und ihre Auswirkungen

Die neuen rechtlichen Rahmenbedingungen, die insbesondere den Mittelstand vor neue Aufgaben stellen, betreffen insbesondere die Energienutzung und den CO2-Ausstoß von Gebäuden und Produktionsanlagen. Dazu kommen steigende Anforderungen an die Nutzung erneuerbarer Energien und an die Implementierung neuer Hardwarekomponenten, um Sicherheitsanforderungen an die kritische Infrastruktur und die Netzstabilität zu gewährleisten. Um hier nicht den Überblick zu verlieren, zeigt die folgende Übersicht einige bereits jetzt absehbare Entwicklungen und die daraus resultierenden Herausforderungen:

  • Auslaufen der Energiepreisbremsen: Die gesetzlichen Absicherungen wie das StromPBG (Strompreisbremsegesetz) sind Ende 2023 ausgelaufen. Unternehmen müssen sich darauf einstellen vor volatilen Strompreisen durch politische Veränderungen oder Umweltkatastrophen nicht mehr wie bisher geschützt zu sein.
  • EU-weite Ausweitung des Emissionshandels auf Gebäude und Verkehr: Der EU-Emissionshandel (EU-ETS) existiert bereits im Bereich Kraftwerke und Industrie und wird bis 2027 auf Brennstoffe in den Bereichen Gebäude und Verkehr ausgeweitet (EU-ETS 2). Dies führt zu einem marktbestimmten CO2-Preis, der voraussichtlich steigen und volatil werden wird. Aktuell liegt der CO2-Preis bei 45 Euro pro Tonne (55 Euro ab 2025), da aber die Verfügbarkeit der Zertifikate ab 2027 etwa fünfmal so schnell abnehmen wird wie die historischen Emissionen, ist mit einer nicht absehbaren Preissteigerung im ETS-Handel zu rechnen.[2] Die bei der Wärmeerzeugung entstehenden CO2-Kosten werden dabei aktuell zwischen Mietern und Vermietern aufgeteilt (50:50 im Nichtwohnbereich). Auch der Unterhalt von Fuhrparks wird durch höhere Brennstoffkosten betroffen sein.
  • Steigende Netzentgelte: Die bereits anlaufende Elektrifizierung des Verkehrs- und Wärmesektors erfordert erhebliche Netzoptimierungen und -ausbauten, da das aktuelle Niederspannungsnetz nicht für einen schnellen Hochlauf ausgelegt ist.[3] Der Ausbau der Übertragungsnetze bis 2045 liegt laut aktuellem Netzentwicklungsplan bei geschätzten Kosten zwischen 150 Mrd. (BNetzA) und 300 Mrd. Euro (VNB).[4] Es ist zu befürchten, dass die Netzentgelte für Verbraucher und Unternehmen somit weiter anziehen werden.
  • EU-Gebäuderichtlinie (EPBD): Die am 12.03.2024 beschlossene Energy Performance for Buildings Directive (EPBD) verpflichtet die Mitgliedsstaaten, bis 2030 die energetisch schlechtesten 16 Prozent und bis 2033 die schlechtesten 26 Prozent der Nichtwohngebäude zu modernisieren. Die entsprechenden Schwellenwerte werden in den Mitgliedsstaaten z. B. in Primärenergieverbrauch in kWh/(m2·a) angegeben. Für Gebäudeeigentümer, die ab 2030 bzw. 2033 keinen entsprechenden Energieausweis vorlegen können, kann dies Folgen auf die Vermietungs- und Verkaufsmöglichkeit der Objekte haben.
  • Technische Vorgaben: Smart Meter Rollout und Steuerbarkeit nach §14a EnWG: Steuerbare Verbrauchseinrichtungen wie Wärmepumpen und Ladeeinrichtungen für
    E-Autos belasten das Netz stärker als herkömmliche Haushaltsgeräte. Der flächendeckende Rollout von intelligenten Messsystemen und Gateways zum Monitoring im Niederspannungsnetz (GNDEW) und die angestrebte Steuerbarkeit von Verbrauchern gemäß §14a des Energiewirtschaftsgesetzes sind technische Maßnahmen, die zur Effizienz und Stabilität des Netzes beitragen sollen. Sie erfordern jedoch mittelfristig eine hardwareseitige Nachrüstung der Netzanschlusspunkte und ggf. weitere Steuereinheiten.[5]
  • Auslaufen der EEG-Förderung: Die Förderung durch das Erneuerbare-Energien-Gesetz (EEG) für unternehmenseigene Photovoltaikanlagen läuft nach 20 Betriebsjahren aus. In den kommenden drei Jahren werden das laut Marktstammdatenregister im Schnitt Anlagen mit ca. 800 Megawatt und fünf Jahre später bereits 6,4 Gigawatt jährlich sein, die diese Grenze erreichen (Abbildung 1). Viele gewerbliche Anlagenbetreiber müssen sich erstmalig nach neuen Vermarktungsmöglichkeiten umsehen. Dies erfordert neue Geschäftsmodelle und gegebenenfalls technische Nachrüstungen, um den wirtschaftlichen Weiterbetrieb dieser Anlagen zu gewährleisten. Und dieser kann sich durchaus lohnen: Erste Langzeitdaten zeigen bisher geringe Leistungsabfallraten für Photovoltaikanlagen von 2-3 Prozent nach über 15 Jahren.[6]
Abbildung 1: Installierte Erzeugungsleistung nach Anmeldejahr laut Marktstammdatenregister (MaStR), extrahiert mit openMaStR (Quelle: ee-status.de)

Auch wenn diese Entwicklungen zunächst große Herausforderungen mit sich bringen, so bieten sie dennoch bedeutende Chancen für Unternehmen, die bereit sind, sich anzupassen und die Transformation des Energiesystems als Teilnehmer mitzugestalten.

Flexibilität und Elektrifizierung als Chance

Dabei erstrecken sich die neuen Handlungsoptionen für Unternehmen im Wesentlichen auf zwei Bereiche: Automatisierte, zeitliche Verschiebungen des Energieverbrauchs (Elektrische Flexibilität) sowie datenbasierte und sektorenübergreifende Planung bei Maßnahmen zur Dekarbonisierung der Nicht-Strom-Sektoren:

Elektrische Flexibilität:

  • Intelligente Energiemanagement- und Automations-Systeme: Vorausschauende Stromspeicher und steuerbare Verbraucher können nach den seit 2023 teilweise und ab 2025 flächendeckend verfügbaren dynamischen Stromtarifen optimiert werden. Dies spart Kosten durch eine Leistungsaufnahme bei günstigen (oder sogar negativen) Strompreisen. In Abbildung 2 ist auf Basis der Börsenstrompreise von 2022 dargestellt, dass Einsparungen von bis zu 20 Prozent möglich gewesen wären, wenn man jederzeit 1-20 kW um 1-14 Stunde(n) hätte verschieben können. Darüber hinaus können teure Lastspitzen durch clevere Steuerung von Verbräuchen reduziert werden, was zu Kosteneinsparungen im jährlichen Leistungspreis führt.
Abbildung 2: Potenzielle jährliche Einsparungen eines gewerblichen Lastprofils (ca. 300.000 kWh/a) in Prozent bei optimaler Lastverschiebung auf Basis der Börsenstrompreise von 2022

 

  • Reduzierte Netzentgelte: Die Implementierung neu installierter steuerbarer Verbrauchseinrichtungen nach §14a EnWG ist zwar seit 2024 verpflichtend, bietet aber auch erhebliche Einsparmöglichkeiten bei den Netzentgelten. Betreiber können zwischen einer pauschalen Reduzierung des Netzentgelts (zwischen 110 und 190 Euro pro Jahr) oder einer prozentualen Reduzierung um 60 Prozent des jeweiligen Netzentgelts wählen. Zusätzlich wird ab 2025 ein zeitvariables Netzentgelt eingeführt, das Anreize für die Verlagerung von Verbrauchszeiten bietet, um Lastspitzen zu vermeiden und die Netzstabilität zu erhöhen.
  • Virtuelle Kraftwerke und Aggregation: Die Flexibilität wird kleinteiliger und dezentraler. Zwar ist die Teilnahme am Regelleistungsmarkt der Übertragungsnetzbetreiber erst ab 1 MW Leistung möglich, aber bereits jetzt bietet die Teilnahme an einem virtuellen Kraftwerk auch kleineren Einheiten die Möglichkeit ihre Flexibilität zu vermarkten. Zukünftig könnten auch andere sogenannte Aggregatoren (z. B. Quartiers-Management-Systeme) zur Stabilisierung des Verteilnetzes durch Flexibilitäten beitragen.

Voraussetzung um an solchen Systemen zu partizipieren ist dabei immer, dass bei Installation oder Umrüstung der lokalen Steuereinheiten auch die technische Anschlussfähigkeit der unterstützten Kommunikationsprotokolle beachtet wird. Bei Energiemanagement-Systemen (EMS) ist außerdem auf die Integrationstiefe der Lösungen zu achten. Während manche EMS vor allem Daten erfassen, speichern und als Zeitreihen und Statistiken visualisieren können (Monitoring) bieten etwa die EMS der jeweiligen Anlagen (z. B. Batterie-EMS) schon eine integrierte PV-Eigenverbrauchsoptimierung an. Noch weitergehende Gebäudeautomationssysteme sind in der Lage sämtliche Geräte innerhalb der technischen oder benutzerspezifischen Rahmenbedingungen auch zu- und abzuschalten und damit alle finanziellen Anreize wie Preissignale der Netzbetreiber oder die Vergütungen durch Aggregatoren oder lokale Energiemärkte auszuschöpfen.

Durch eine technische Vorbereitung auf die Aktivierung von Flexibilitäten, können bereits jetzt Betriebszeiten geeigneter Anlagen auf günstige oder negative Strompreise abgestimmt werden. Da diese bereits 24 Stunden im Voraus bekannt sind, können Fahrpläne in vorgegebenen Grenzen und automatisiert werden. Bei technischen Nach- und Umrüstungen sollte überlegt werden auch den Netzanschluss mit einem Smart-Meter-Gateway (SMGW) auszustatten, da der Rollout-Ablauf bis Ende 2032 bereits beschlossen ist und zukünftig die entsprechenden digitalen Dienste von sogenannten „aktive Externen Marktteilnehmer“ (aEMT) nur über das SMGW zur Verfügung stehen.

Der zweite große Aktionsbereich betrifft vor allem bauliche Maßnahmen, bei denen Entscheidungen naturgemäß langfristig und möglichst zukunftsweisend gestaltet werden. In Zukunft ist hier allerdings die gleichzeitige Betrachtung aller Sektoren sowie die Energievermarktung und die dafür notwendige technische Ausgestaltung in Bezug auf die beschriebenen Flexibilitätspotenziale von entscheidender Bedeutung.

Dekarbonisierung der Nicht-Strom-Sektoren:

  • Elektromobilität: Wie oben zur Flexibilität ausgeführt, bietet auch die Integration von Elektromobilität ein enormes Potenzial zur Lastverschiebung. Einsparungen durch netzdienliches Verhalten beim Laden des Fuhrparks oder der Fahrzeuge von Mitarbeiter:innen können bei smarter Abstimmung auf das Nutzungsverhalten bis zu 20 Prozent der Stromkosten betragen. Der Betrieb von öffentlichen Ladepunkten bietet darüber hinaus einen zusätzlichen Vermarktungskanal für Photovoltaikanlagen und ungenutzter Flächen.
  • Ersatz fossiler Wärmeerzeugungsanlagen: Zukünftige steigende Betriebskosten fossiler Anlagen können durch den Einsatz stromgetriebener Lösungen wie Wärmepumpen gesenkt werden. Durch die Trägheit moderner und gut gedämmter Wärmespeichersysteme und eine Wetterprognosen-basierte Steuerung wird der Anteil von nutzbarem Solarstrom dabei immer größer. Insbesondere in Verbindung mit abgeschriebenen und förderlosen EE-Anlagen kann dann jede selbstgenutzte kWh zusätzlich Stromkosten sparen. Für den restlichen Strom aus dem Netz, führt der Ausbau erneuerbarer Energien langfristig zu günstigeren Preisen (besonders zu Geschäftszeiten), auch wenn Netzentgelte weiter steigen könnten (siehe oben).
  • EU Energy Communities und EU RED II: Neue gesetzliche Rahmenbedingungen, wie die Richtlinie zur Förderung der Nutzung von Energie aus erneuerbaren Quellen (EU RED II), bieten erhebliche Chancen für gemeinschaftliche Energieprojekte und Eigenversorgung. Unternehmen können durch die Teilnahme an Energiegemeinschaften die Energiekosten deutlich senken und die Versorgungssicherheit erhöhen. Diese Gemeinschaften bieten Unternehmen und Bürger:innen die Möglichkeit, gemeinsam in erneuerbare Energien zu investieren und von kollektiven Einsparungen sowie von erhöhter Energieunabhängigkeit zu profitieren.
  • Nahwärmenetze: Moderne Prosumer-Wärmenetze der vierten und fünften Generation nutzen eine Vielzahl erneuerbarer Energiequellen und ermöglichen es Nutzer:innen, sowohl Wärme zu beziehen als auch zu liefern. Somit könnten beispielsweise Technologien zur Abwärmenutzung und Wärmerückgewinnung (etwa in Rechenzentren oder Serverräumen) dem Netz und damit mehreren Gebäuden zur Verfügung stehen. Dadurch kann die Energieeffizienz erheblich gesteigert, Investitionskosten auf mehrere Objekte verteilt und letztlich die Abhängigkeit von fossilen Brennstoffen reduziert werden. Durch frühzeitige Konzeption und deren Abstimmung mit lokalen Behörden, kann eine Berücksichtigung in der gesetzlich neu vorgeschriebenen kommunalen Wärmeplanung gewährleistet werden.

Gerade wenn es um Tiefbau- und Erdarbeiten für Heizzentralen und die Verlegung von Mittelspannungs- oder Wärmeleitungen geht, können schnell hohe Kosten anfallen. Hier sollte also auf Basis einer belastbaren Datengrundlage geplant und entschieden werden, um redundante Arbeitsschritte möglichst zu vermeiden. Bei jeder baulichen Maßnahme sollten die oben aufgelisteten Flexibilitätspotenziale mitgedacht und bei der Entscheidung auf eine Interoperabilität der Komponenten geachtet werden.

Vorsprung durch Digitalisierung

Die Vielzahl der möglichen Handlungsoptionen in beiden Handlungsfeldern führt zu sehr komplexen Fragestellungen und macht es schwer bis nahezu unmöglich ohne spezialisierte Hilfsmittel und Fachkenntnisse eine auch für die Zukunft optimale Lösung zu identifizieren. Technisch gibt es dabei oft konkurrierende, teils proprietäre Systeme der OEMs und für eine Zusammenführung unterschiedlicher Anlagen fehlen die entsprechenden Standards und Datenmodelle für eine generalisierte Informationsverarbeitung.

Die sehr dynamische Entwicklung und zunehmende Digitalisierung im Bereich der Gebäude bietet dabei allerdings eine große Chance. Im Folgenden werden einige grundlegende Paradigmen aufgelistet, die sowohl für die Entscheidungsfindung als auch für den Betrieb vernetzter Energieanlagen einen entscheidenden Durchbruch bringen.

  • Internet of Things (IoT): Stark gefallene Kosten für IoT-fähige Sensoren erleichtern die Datenaggregation und somit die Informationsbasis und Skalierbarkeit von Energiemanagementsystemen. Eine solide Datenbasis unterstützt die effiziente Echtzeitüberwachung und -steuerung von Energieverbrauchern und dient als Entscheidungsgrundlage für weitere Maßnahmen. Von einigen Kommunen wird bereits eine LoRa-Infrastruktur für die Gerätevernetzung zur Verfügung gestellt, was die Installation eigener Gateways spart. Smarte, datenbasierte Steuerung hat bereits das Potenzial, kurzfristig Einsparungen von bis zu 30 Prozent der Energiekosten zu ermöglichen, indem beispielsweise Räume nach individueller Nutzung beheizt werden.
  • Digitale Open-Source Tools: Kostengünstige Open-Source-Frameworks können einen niederschwelligen und kostengünstigen Einstieg in die Umsetzung ermöglichen. Mittlerweile weit verbreitete Energiemanagement- und Heimautomations-Systeme, wie openEMS, openHAB oder HomeAssistant ermöglichen eine Überwachung des Energieverbrauchs und sind in der Lage einzelne Geräte anzusteuern. Diese freien und kontinuierlich weiterentwickelten Werkzeuge bieten gut dokumentierte Schnittstellen für weitere Energiedienste und können Unternehmen relativ schnell in die Lage versetzen individuell ihre Energieeffizienz zu steigern und damit Kosten zu senken. Einmal aufgesetzt, sind individuelle Erweiterungen und zusätzliche Hardwareintegrationen mit geringem Aufwand zu integrieren.[7]
  • Offene Datenbasis: Bei der Erstellung von ganzheitlichen Konzepten – insbesondere im Bereich Quartiere und Wärme – überschneiden sich oft verschiedene Planungsaufgaben: Städtebauliche Aspekte und Bebauungspläne, Wasserwirtschaft, Fernwärme- und Verteilnetzplanung, Kommunaler Wärmeplan und Flächennutzungspläne. Frühzeitige Abstimmungen aller Beteiligten auf Grundlage einer gemeinsamen Datenbasis können Projektlaufzeiten verkürzen und die Genehmigungsprozesse beschleunigen, was den Aufwand für Maßnahmen auf allen Seiten reduzieren kann. Hier kommen viele Open-Data-Initiativen zum Tragen, die vereinzelt bereits Geodaten bereitstellen (z. B. Open Data Bayern).[8] Über europäische und nationale Ansätze zu ganzheitlichen Energy Data Spaces wird versucht diese Daten semantisch anzureichern und zu verknüpfen, um sie für weiterentwickelte Dienste noch besser nutzbar zu machen (siehe z. B. Projekt NEED).[9]
  • Standardisierung und semantische Interoperabilität: Immer mehr Hersteller haben bereits erkannt, dass sich eine flächendeckende Integration der smarten Energieanlagen und die daraus entstehenden Potenziale nur erschließen lassen, wenn die Anlagen in der Lage sind automatisiert miteinander zu kommunizieren. Hier gibt es bereits verschiedene Ansätze auf europäischer Ebene über generische Schnittstellen (z. B. EE-Bus, OPC UA), energiebezogene Ontologien (SAREF4ENER, Open Energy Ontology) oder neue Datenmodelle für Flexibilitäten von dezentralen Ressourcen (openADR sowie der kommende S2-Standard EN-50491-12-2).[10]

Die Veränderungen als Chance nutzen

Durch die Veränderten regulatorischen und technischen Rahmenbedingungen wird manches komplexer und KMU müssen sich neben ihrem Kerngeschäft in Teile der Energiewirtschaft eindenken. Einerseits steigt der Druck Emissionen zu reduzieren, andererseits sind bereits heute klare Anreize gesetzt bei der Transformation wichtige Synergien zu erschließen.

Für kleine und mittlere Unternehmen lohnt sich der Umbau zu einer nachhaltigen und zunehmend autonomeren Energieversorgung bereits finanziell. Wenn frühzeitige und informierte Entscheidungen getroffen werden, können Unternehmen nicht nur Kosten senken, sondern sich durch Klimaschutz auch langfristige Wettbewerbsvorteile und Energieunabhängigkeit sichern. Die Digitalisierung spielt dabei eine entscheidende Rolle, um Planungssicherheit zu gewährleisten und die richtigen Weichen für die Zukunft zu stellen. Die größte Herausforderung bleibt hier die richtigen Partner zu finden, da sich der Markt momentan noch stark konsolidiert.

Der Forschungs- und Wissenstransfer über Netzwerke wie das Mittelstand-Digital Zentrum Augsburg und Pilotprojekte mit Forschungsinstituten ist eine gute Möglichkeit, um die individuellen Möglichkeiten und deren technische Machbarkeit herauszuarbeiten.

[1]https://www.bundesverfassungsgericht.de/SharedDocs/Pressemitteilungen/DE/2021/bvg21-031.html
[2]https://www.umweltbundesamt.de/sites/default/files/medien/11850/publikationen/09_2024_cc_ets_2_supply_and_demand.pdf
[3]https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/Aktuelles_enwg/14a/start.html
[4]https://www.bundesnetzagentur.de/DE/Allgemeines/Veranstaltungen/240118/start.html
[5]https://www.recht.bund.de/bgbl/1/2023/133/VO.html
[6]P. Olczak, Applied Energy, Vol. 343, August 2023
[7]EILE-Projekt (https://digitalzentrum-augsburg.de/zukunftsprojekt-eile/)
[8]https://open.bydata.de
[9]https://need.energy/
[10]https://s2standard.org/

Die Vermeidung von Treibhausgasemissionen zur Eindämmung des Klimawandels ist eine Voraussetzung zur langfristigen Sicherung und gerechten Verteilung des globalen Wohlstands. Daher gewinnt ökologische Nachhaltigkeit in der Dimension der Klimawirkung in unserer Gesellschaft, wie auch in gesetzlichen und marktlichen Rahmenbedingungen für die Industrie, weiter an Relevanz. In produzierenden Unternehmen, und damit auch in kleinen und mittleren Unternehmen (KMU), gehört die Produktion zu den maßgeblichen Verursachern von Treibhausgasemissionen. In diesem Beitrag erfahren Sie, wie Sie durch gezielte Entscheidungen in der Produktionsplanung und -steuerung die ökologische Nachhaltigkeit Ihrer Produktion steigern können.

Die weltweite Zunahme der Klimaschutzgesetzgebung stellt Unternehmen und damit auch KMU vor eine Vielzahl an Herausforderungen. Gesetze wie das Klimaschutzgesetz in Deutschland oder Verordnungen wie die Corporate Sustainability Reporting Directive (CSRD) auf EU-Ebene nehmen Unternehmen bezüglich der Berichterstattung hinsichtlich ihrer klimawirksamen Emissionen und deren Reduktion konkret in die Pflicht. Bis 2028 wird die Zahl der berichtspflichtigen Unternehmen stufenweise erhöht. Auch kapitalmarktorientierte KMU fallen dann unter die Berichtspflicht. Voraussichtlich werden 13.000 bis 15.000 deutsche Unternehmen die neuen CSRD-Vorgaben direkt erfüllen müssen. Auch wenn nicht kapitalmarktorientierte kleinste, kleine und mittlere Unternehmen davon nicht direkt betroffen sind, ist zu erwarten, dass die Anforderungen von größeren und berichtspflichtigen Unternehmen entlang von Lieferketten weitergegeben werden.

Gleichzeitig sorgt das den rechtlichen Rahmenbedingungen zugrundeliegende Ziel der Eindämmung des menschengemachten Klimawandels für nachhaltigkeitsorientiertes Denken in der Gesellschaft. Dieses äußert sich auch in bewussterem Konsumverhalten von Endverbrauchern, das wiederum durch die Weitergabe von Berichts- und Reduktionszielen entlang von Wertschöpfungsketten auf alle beteiligten Unternehmen Auswirkungen hat. Unternehmen aller Größenklassen setzen sich daher Dekarbonisierungsziele und fordern zunehmend Nachweise des CO2-Fußabdrucks von ihren Lieferanten. Der CO2-Fußabdruck umfasst hier neben CO2 auch alle weiteren Treibhausgasemissionen. Eine nachgewiesen klimawirkungsorientierte Produktion, in der Schritte zur Reduktion des CO2-Fußabdrucks unternommen werden, wird sich daher bei der Auftragsvergabe und Unternehmensfinanzierung zukünftig immer stärker vorteilhaft auswirken. Grundsätzlich lässt sich festhalten: Ökologische Nachhaltigkeit in Form eines geringen CO2-Fußabdrucks von Unternehmen und Produkten lohnt sich bereits heute und wird sich zukünftig immer stärker auszahlen – auch für KMU.

Viele Verursacher industrieller Treibhausgasemissionen in der Produktion

Das Greenhouse Gas Protocol (GHG) teilt relevante Bestandteile des CO2-Fußabdrucks von Organisationen in drei Scopes ein. Neben den organisationsinternen Emissionsquellen stehen dabei auch die entlang von vor- und nachgelagerten Wertschöpfungsketten anfallenden Emissionen im Fokus. Abbildung 1 zeigt eine Übersicht der Scopes 1 und 2 sowie den Teil der vorgelagerten Wertschöpfungskette von Scope 3.

Abbildung 1: Scopes 1, 2 und 3 des GHG-Protocol

Scope 1 umfasst vor Ort anfallende direkte Emissionen von Treibhausgasen in mobilen und stationären Anlagen, also Verbrennungsabgase und flüchtige klimarelevante Gase.
In Scope 2 sind Emissionen aus der Erzeugung von eingekaufter Energie zusammengefasst. Enthalten sind hier beispielsweise extern bezogener Strom und Dampf, Fernwärme und Fernkälte.
Scope 3 beinhaltet alle anderen entlang der Wertschöpfungskette anfallenden Emissionen. Verursacher von Scope-3-Emissionen in der vorgelagerten Wertschöpfungskette sind gekaufte Waren und Dienstleistungen, Anlagegüter (wie Maschinen, Anlagen und Fahrzeuge), Geschäftsreisen, der Berufsverkehr der Mitarbeitenden, die Abfallentsorgung, die Nutzung von Mietobjekten, Transporte sowie Aufwände für die Förderung und Bereitstellung von Energieträgern und Brennstoffen. In die Scope-3-Emissionen der nachgelagerten Wertschöpfungskette fallen Transporte, getätigte Investitionen, Franchisevergaben, die Vermietung von Objekten, Transporte und Verwendung von produzierten Gütern, die Weiterverarbeitung von Produkten sowie deren Endverwertung. Hier wird deutlich, dass Scope-3-Emissionen aufgrund ihrer Zusammensetzung und ihrer Entstehung, die teilweise außerhalb von Unternehmensgrenzen liegt, meist den am schwierigsten zu quantifizierenden und dementsprechend oft schwer beeinflussbaren Teil des Gesamt-CO2-Fußabdrucks von Unternehmen darstellen.

Im Rahmen der Organisation ihres eigenen Produktionsablaufs haben produzierende Unternehmen dennoch Möglichkeiten zur Einflussnahme auf die Emissionstreiber in allen drei Scopes. Die wichtigsten Ansätze sind dabei die gezielte Effizienzsteigerung und die flexible Anpassung der Nutzungsarten und Bezugsquellen von Energie und Material. Die Produktion stellt daher innerhalb produzierender Unternehmen ein zentrales Handlungsfeld für die Reduktion von Treibhausgasemissionen mit allen ihr zuarbeitenden peripheren Bereichen dar. Neben Produktionsanlagen zählen dazu auch die Energie- und Medienversorgung, die technische Gebäudeausstattung und Intralogistiksysteme. Die Nutzung vorhandener organisatorischer Potenziale zur Reduktion von Treibhausgasemissionen bietet gegenüber möglichen strukturellen Anpassungen an Energie- und Produktionssystemen und der Kompensation von CO2-Emissionen Vorteile. Diese sind in der Regel mit signifikanten Investitionskosten beziehungsweise laufenden Kosten verbunden. Die Kompensation von CO2-Emissionen sieht sich zudem zunehmend Zweifeln bezüglich ihrer Langfristigkeit und Validität ausgesetzt.

Organisatorische Maßnahmen im Rahmen der Produktionsplanung und -steuerung

Organisatorische Maßnahmen im Bereich der Anpassung des Produktionsablaufs können in der Regel ohne Investitionen durchgeführt und durch gezielte Entscheidungen im Betrieb des bestehenden Systems umgesetzt werden. Das organisatorische Mittel in diesem Kontext ist die Produktionsplanung und -steuerung (PPS). Ihre Kernaufgaben nach dem Aachener Modell beinhalten beispielsweise die Eigenfertigungsplanung und -steuerung mit Losgrößenrechnung, Feinterminierung, Ressourcenfeinplanung und Reihenfolgeplanung. Hier können Material- und Energieeffizienz sowie Energieflexibilität gezielt gesteuert und eingesetzt werden. Eine weitere Kernaufgabe ist die Fremdbezugsplanung und -steuerung, in der die Scope-3-Emissionen von Eingangsmaterialien beeinflusst werden können. Auch in den Querschnittsaufgaben Auftragsmanagement und Bestandsmanagement sowie den Netzwerkaufgaben (z. B. Netzwerkkonfiguration, also Lieferentenauswahl) ergeben sich Möglichkeiten zur gezielten Reduktion der in der Wertschöpfung entstehenden Klimawirkungen.

PPS-basierte Energieeffizienzmaßnahmen wirken sich im Allgemeinen positiv auf Scope-2-Emissionen aus. Eine höhere Materialeffizienz kann durch eine auf Materialhaltbarkeit
und -abfallvermeidung ausgerichtete PPS erreicht werden. So können Scope-3-Emissionen der vorgelagerten Wertschöpfungskette vermieden werden. Scope-3-Emissionen der nachgelagerten Wertschöpfungskette sind hingegen über die PPS in der Regel nicht beeinflussbar. Exemplarisch werden hier einige Möglichkeiten zur Reduktion der Klimawirkungen durch PPS aufgeführt:

  • Lange Warmhaltezeiten oder häufige Aufwärmvorgänge können durch optimierte Auftragsplanung reduziert und im Fall von direktbefeuerten Prozessen direkte Scope-1-Emissionen vermieden werden.
  • Durch energieflexible PPS kann der Anteil von eigenerzeugter regenerativer Energie aus Photovoltaik-Anlagen (PV-Anlagen) am eigenen Energieverbrauch erhöht werden, indem energieintensive Prozesse oder Aufträge in Zeiten hoher PV-Stromerzeugung geplant werden. Somit wird der Bezug von Netzstrom aus teilweise fossilen Quellen und Scope-2-Emissionen gesenkt.
  • Über Anpassungen des Aufkommens und Routenführung von Intralogistikprozessen in der PPS können Transportwege und damit Scope-1-Emissionen von Fahrzeugen mit Verbrennungsmotor oder Scope-2-Emissionen von Elektrofahrzeugen eingespart werden.

Die konkreten anwendungsfallspezifischen Zusammenhänge zwischen organisatorischen Entscheidungen und den resultierenden Auswirkungen auf die Treibhausgasemissionen von Produktionssystemen sind stets stark von den jeweiligen Produktionsprozessen und deren Verkettung abhängig. Je nach Energie-, Medien- und Materialintensität steigt und fällt dabei auch die Bedeutung der Produktionsperipherie mit technischer Gebäudeausrüstung und Logistiksystemen. In jedem Fall ist zu beachten, dass PPS-Maßnahmen zur Reduktion von Treibhausgasemissionen unter Umständen unerwünschte Auswirkungen auf ökonomische und logistische Ziele der Produktion haben können. Für die Nutzung von Nachhaltigkeitspotenzialen der PPS ist daher eine individuelle Betrachtung der Wechselwirkungen mit den logistischen Zielen der Produktion beziehungsweise den Zielen anderer Domänen und Stakeholdern erforderlich. Neben den genannten Möglichkeiten zur Einflussnahme in klassischen Produktionssystemen stellt die PPS auch einen wichtigen Bestandteil von zirkulären Systemen der Kreislaufwirtschaft dar.

Welche Einflussmöglichkeiten gibt es in meinem Produktionssystem?

Zur Identifikation und Auswahl der individuellen Stellhebel zur Reduktion der Klimawirkung über die PPS bietet sich ein mehrstufiges Vorgehen an. Zunächst müssen die individuellen Gegebenheiten des jeweiligen Anwendungsfalls durchleuchtet werden. Damit können Anforderungen, Randbedingungen und vor allem Informationsbedarfe definiert werden. Diese können im Anschluss durch gezielte Maßnahmen zu Transparenzschaffung, zum Beispiel durch Verknüpfung bestehender Produktions-, Material- und Energiedaten oder deren Erfassung durch Einrichtung kontinuierlicher sowie Durchführung einmaliger Messungen bedient werden. Relevante Bestandsdaten liegen beispielsweise in Enterprise-Resource-Planning-Systemen (ERP-Systemen) in Form von Einkaufs- und Verbrauchsmengen, Lieferanteninformationen, Materialdaten, Arbeitsplänen, Zeitmodellen, Stücklisten und Energierechnungen vor. Via Messung zu erfassende Daten können lokale Energie- und Medienverbräuche oder Ist-Bearbeitungszeiten sein. Die Erfassung der Energiedaten kann beispielsweise durch ein Energiemonitoring-System (EnMS) erfolgen. Ebenfalls denkbar ist die Einbindung von Prognosedaten aus internen oder externen Quellen.

Nach Schaffung ausreichender Transparenz können die Stellhebel identifiziert und hinsichtlich ihrer ökologischen, produktionslogistischen und ökonomischen Auswirkungen bewertet und priorisiert werden. Dafür können zunächst anwendungsfallspezifische energie- und nachhaltigkeitsbezogene Kennzahlen definiert werden. Die theoretische Basis für individuelle ökologische Kennzahlen bilden beispielsweise die Bewertungsgrößen Product Carbon Footprint (PCF) und Corporate Carbon Footprint (CCF). Entsprechende Berechnungsgrundlagen liefert unter anderem die Methode des Life Cycle Assessment (LCA). Die Bewertung ermöglicht eine fundierte Kosten-Nutzen-Analyse und gewährleistet, dass etwaige „Low-Hanging-Fruits“ identifiziert werden können. Außerdem können die Kosten für organisatorische Maßnahmen der PPS mit möglichen strukturellen und investitionsbehafteten Anpassungen oder Kompensationsprojekten abgeglichen werden.

Nach der initialen Identifikation und den ersten Umsetzungen von Einmal-Maßnahmen kann im nächsten Schritt die langfristige Operationalisierung der identifizierten Maßnahmen in der PPS erfolgen. Als Grundlage dafür müssen idealerweise kontinuierlich erfasste Daten in PPS-Systeme eingebunden und gegebenenfalls Datenverbindungen zwischen PPS-Systemen und weiteren bestehenden Datensystemen geschaffen werden. Eine ganzheitliche Digitalisierung der PPS ist dabei als Basis für die Transformationen zu einer nachhaltigen PPS (nPPS) ideal.

Wie kann nPPS konkret aussehen?

Ein anschauliches Beispiel für den Ablauf der Umsetzung von Maßnahmen im Rahmen der nPPS ist die lang- bis kurzfristige Anpassung des Strombedarfs der Produktion an eine vorhandene PV-Anlage. Durch intelligente Angleichung des Produktionsablaufs kann der Anteil an eigenerzeugter regenerativer Energie am Energiebedarf der Produktion erhöht werden. Bei Substitution von fossilem Netzstrom durch regenerativ erzeugten Strom werden Scope-2-Emissionen vermieden.

Dafür muss der vom Auftragsbestand und -volumen abhängige Bedarfslastgang des Produktionssystems an den wetter- und jahreszeitabhängigen Erzeugungslastgang der PV-Anlage angeglichen werden.

Dies kann durch verschiedene Anpassungen im Rahmen der PPS-Aufgaben erfolgen:

  • Langfristige Anpassungen des Produktionsprogramms an die saisonale Verfügbarkeit von eigenerzeugtem Strom, z. B. durch Planung der Fertigung energieintensiver Aufträge in den Sommermonaten
  • Mittelfristige Verschiebung energieintensiver Aufträge in die Mittagsstunden im Rahmen der Produktionsplanung auf Wochen- oder Tagesbasis, z. B. durch Anpassung der Produktionsreihenfolge, Anpassung der Kapazitätsplanung oder Anpassung von Schichtzeiten
  • Kurzfristige Eingriffe bei untertägiger geringer Sonneneinstrahlung bei Wolkenfronten o. Ä. im Rahmen der Produktionssteuerung, z. B. durch Unterbrechung von Aufträgen, Verschieben von Auftragsstarts oder Veränderung der Auftragsreihenfolge

Als Grundlage für die Entscheidung zu Art, Umfang und Zeitpunkt der Umsetzung solcher Maßnahmen sind verschiedene unternehmensinterne und externe Daten erforderlich. Beispielsweise können ein langfristiges Produktionsprogramm, der tagesbezogene Auftragsbestand und zugehörige Stammdaten aus ERP-Systemen sowie die detaillierte Auftragsreihenfolge und Maschinenbelegungsplanung aus Manufacturing-Execution- oder Advanced-Planning-and-Scheduling-Systemen zusammen mit Energieverbrauchskennwerten und CO2e-Emissionsfaktoren (Neben CO2 umfassen CO2-Äquivalente (CO2e) auch alle weiteren Treibhausgasemissionen) die Basis für die Eigenverbrauchssteigerung bilden.

Digitale Hilfsmittel wie Sensorik zur Erfassung der Ist-Verbräuche und -Erzeugung, Prognosetools, Energiedatenmodelle von Produktionsressourcen und Wetterdatenservices verbessern die vorhandenen Daten in Menge und Qualität. Sie bieten auch die Grundlage für die Erweiterung um ganzheitliche Optimierungsalgorithmen oder Anwendungen Künstlicher Intelligenz.

Nachhaltige Produktionsplanung und -steuerung kann Treibhausgasemissionen senken oder vermeiden

Im Rahmen der Aufgaben der PPS bieten sich vielfältige Möglichkeiten zur Steigerung der ökologischen Nachhaltigkeit. Organisatorische Energie- und Materialeffizienz, die flexible Anpassungen an das Angebot von Energie aus erneuerbaren Quellen, die Vermeidung von Abfällen oder Kreislaufwirtschaft sind hier konkrete Beispiele. Um in spezifischen Fällen geeignete Lösungen zu finden, müssen die individuellen Gegebenheiten des betreffenden Produktionssystems und seiner Peripherie erfasst, analysiert und entsprechend berücksichtigt werden. Die Zusammenarbeit mit Expert:innen für nachhaltige Produktionssysteme und Dekarbonisierung des Mittelstand-Digital Zentrums Augsburg ermöglicht es Unternehmen, hier von Fachwissen und Erfahrung zu profitieren.

Organisatorische Anpassungen können in verschiedenen Ausprägungen im System implementiert werden. Für eine langfristige Verankerung der Nachhaltigkeit in der PPS müssen entsprechende Kennzahlen und Mechanismen in bestehende Systeme und Software integriert beziehungsweise in entsprechenden Erweiterungen umgesetzt werden. Die Hinzunahme der Zielgröße CO2e-Emissionen steigert die Komplexität der PPS. Der Einsatz digitaler Lösungen kann Unternehmen dabei helfen, die Komplexität und entstehende zusätzliche Aufwände zu meistern und ein ganzheitlich nachhaltiges Ergebnis zu erzielen.